Aufgaben:Aufgabe 1.10: BPSK–Basisbandmodell: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
Zeile 59: Zeile 59:
 
===Musterlösung===
 
===Musterlösung===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Richtig sind die <u>die Aussagen 2, 3 und 4</u>. $H_{\rm K,TP}(f)$ ergibt sich aus $H_{\rm K}(f)$ durch Abschneiden der negativen Frequenzanteile sowie Verschieben um $f_{\rm T}$ nach links. Bei Frequenzgängen wird – im Gegensatz zu Spektren – auf das Verdoppeln der Anteile bei positiven Frequenzen verzichtet. Deshalb gilt:
+
'''(1)'''&nbsp; Richtig sind die <u>die Aussagen 2, 3 und 4</u>:
 +
*$H_{\rm K,TP}(f)$ ergibt sich aus $H_{\rm K}(f)$ durch Abschneiden der negativen Frequenzanteile sowie Verschieben um $f_{\rm T}$ nach links.
 +
* Bei Frequenzgängen wird – im Gegensatz zu Spektren – auf das Verdoppeln der Anteile bei positiven Frequenzen verzichtet. Deshalb gilt:
 
:$$H_{\rm K,\hspace{0.04cm} TP}(f= 0) = H_{\rm K}(f= f_{\rm T})=1.$$
 
:$$H_{\rm K,\hspace{0.04cm} TP}(f= 0) = H_{\rm K}(f= f_{\rm T})=1.$$
Wegen der reellen unsymmetrischen Spektralfunktionen $H_{\rm K,TP}(f)$ ist die Fourierrücktransformierte $h_{\rm K,TP}(t)$ nach dem Zuordnungssatz komplex.
+
*Wegen der reellen unsymmetrischen Spektralfunktionen $H_{\rm K,\hspace{0.04cm}TP}(f)$ ist die zugehörige Zeitfunktion (Fourierrücktransformierte) $h_{\rm K,\hspace{0.04cm}TP}(t)$ nach dem Zuordnungssatz komplex.
 +
 
 
[[Datei:P_ID1684__Dig_A_4_3_a.png|center|frame|Tiefpassfunktionen für $H_{\rm K}(f)$]]
 
[[Datei:P_ID1684__Dig_A_4_3_a.png|center|frame|Tiefpassfunktionen für $H_{\rm K}(f)$]]
  
'''(2)'''&nbsp; Hier ist nur der <u>dritte Lösungsvorschlag</u> richtig. Die Spektralfunktion $H_{\rm MKD}(f)$ besitzt stets einen geraden Realteil. Demzufolge ist $h_{\rm MKD}(t)$ stets reell. Hätte $H_{\rm K}(f)$ zusätzlich einen um $f_{\rm T}$ ungeraden Imaginärteil, so würde $H_{\rm MKD}(f)$ einen um $f = 0$  ungeraden Imaginärteil aufweisen. Damit wäre $h_{\rm MKD}(t)$ immer noch eine reelle Funktion.
+
'''(2)'''&nbsp; Hier ist nur der <u>dritte Lösungsvorschlag</u> richtig:
 +
*Die Spektralfunktion $H_{\rm MKD}(f)$ besitzt stets einen geraden Realteil. Demzufolge ist $h_{\rm MKD}(t)$ stets reell.  
 +
*Hätte $H_{\rm K}(f)$ zusätzlich einen um $f_{\rm T}$ ungeraden Imaginärteil, so würde $H_{\rm MKD}(f)$ einen um $f = 0$  ungeraden Imaginärteil aufweisen. Damit wäre $h_{\rm MKD}(t)$ immer noch eine reelle Funktion.
 +
 
 +
 
 +
Die Grafik verdeutlicht die Unterschiede zwischen $H_{\rm K,\hspace{0.04cm}TP}(f)$ und $H_{\rm MKD}(f)$. Die Anteile von $H_{\rm MKD}(f)$ im Bereich um $\pm 2f_{\rm T}$ müssen nicht weiter beachtet werden.
  
Die Grafik verdeutlicht die Unterschiede zwischen $H_{\rm K,TP}(f)$ und $H_{\rm MKD}(f)$. Die Anteile von $H_{\rm MKD}(f)$ im Bereich um $\pm 2f_{\rm T}$ müssen nicht weiter beachtet werden.
 
  
 
'''(3)'''&nbsp; $H_{\rm MKD}(f)$ setzt sich additiv aus einem Rechteck und einem Dreieck zusammen, jeweils mit Breite $\delta f_{\rm K}$ und Höhe $0.5$. Daraus folgt:
 
'''(3)'''&nbsp; $H_{\rm MKD}(f)$ setzt sich additiv aus einem Rechteck und einem Dreieck zusammen, jeweils mit Breite $\delta f_{\rm K}$ und Höhe $0.5$. Daraus folgt:
 
:$$h_{\rm MKD}(t) = \frac{\Delta f_{\rm K}}{2} \cdot {\rm si} (\pi \cdot \Delta f_{\rm K} \cdot t)+ \frac{\Delta f_{\rm K}}{4} \cdot {\rm si}^2 (\pi \cdot \frac{\Delta f_{\rm K}}{2} \cdot t)$$
 
:$$h_{\rm MKD}(t) = \frac{\Delta f_{\rm K}}{2} \cdot {\rm si} (\pi \cdot \Delta f_{\rm K} \cdot t)+ \frac{\Delta f_{\rm K}}{4} \cdot {\rm si}^2 (\pi \cdot \frac{\Delta f_{\rm K}}{2} \cdot t)$$
:$$\Rightarrow \hspace{0.3cm}h_{\rm MKD}(t = 0) = \frac{\Delta f_{\rm K}}{2} + \frac{\Delta f_{\rm K}}{4} = 0.75 \cdot \Delta f_{\rm K}$$
+
:$$ \Rightarrow \hspace{0.3cm}h_{\rm MKD}(t = 0) = \frac{\Delta f_{\rm K}}{2} + \frac{\Delta f_{\rm K}}{4} = 0.75 \cdot \Delta f_{\rm K}\hspace{0.3cm}
:$$\Rightarrow \hspace{0.3cm}h_{\rm MKD}(t = 0)/{\Delta f_{\rm K}} \hspace{0.1cm}\underline {= 0.75} .$$
+
\Rightarrow \hspace{0.3cm}h_{\rm MKD}(t = 0)/{\Delta f_{\rm K}} \hspace{0.1cm}\underline {= 0.75} .$$
  
'''(4)'''&nbsp; Die erste si–Funktion besitzt zwar äquidistante Nulldurchgänge im Abstand $1/\Delta f_{\rm K}$. Die äquidistanten Nulldurchgänge der gesamten Zeitfunktion $h_{\rm MKD}$ werden aber durch den zweiten Term bestimmt:
+
 
 +
'''(4)'''&nbsp; Richtig ist der <u>zweite Lösungsvorschlag:</u>
 +
*Die erste si–Funktion besitzt zwar äquidistante Nulldurchgänge im Abstand $1/\Delta f_{\rm K}$.  
 +
*Die äquidistanten Nulldurchgänge der gesamten Zeitfunktion $h_{\rm MKD}$ werden aber durch den zweiten Term bestimmt:
 
:$$h_{\rm MKD}(t = \frac{1}{\Delta f_{\rm K}}) = \ \frac{\Delta f_{\rm K}}{2} \cdot {\rm si} (\pi )+
 
:$$h_{\rm MKD}(t = \frac{1}{\Delta f_{\rm K}}) = \ \frac{\Delta f_{\rm K}}{2} \cdot {\rm si} (\pi )+
 
\frac{\Delta f_{\rm K}}{4} \cdot {\rm si}^2 (\pi/2) = \frac{\Delta
 
\frac{\Delta f_{\rm K}}{4} \cdot {\rm si}^2 (\pi/2) = \frac{\Delta
Zeile 80: Zeile 90:
 
f_{\rm K}}{2} \cdot {\rm si} (2\pi )+ \frac{\Delta f_{\rm K}}{4}
 
f_{\rm K}}{2} \cdot {\rm si} (2\pi )+ \frac{\Delta f_{\rm K}}{4}
 
\cdot {\rm si}^2 (\pi) = 0.$$
 
\cdot {\rm si}^2 (\pi) = 0.$$
Richtig ist der <u>zweite Lösungsvorschlag.</u>
+
 
  
  

Version vom 8. November 2017, 11:54 Uhr

Unsymmetrischer Kanalfrequenzgang

Wir betrachten in dieser Aufgabe ein BPSK–System mit kohärenter Demodulation, das heißt, es gilt

$$s(t) \ = \ z(t) \cdot q(t),$$
$$b(t) \ = \ 2 \cdot z(t) \cdot r(t) .$$

Die hier gewählten Bezeichnungen lehnen sich an das Blockschaltbild im Theorieteil an.

Der Einfluss eines Kanalfrequenzgangs $H_{\rm K}(f)$ lässt sich in einfacher Weise berücksichtigen, wenn man diesen zusammen mit Modulator und Demodulator durch einen gemeinsamen Basisbandfrequenzgang beschreibt:

$$H_{\rm MKD}(f) = {1}/{2} \cdot \left [ H_{\rm K}(f-f_{\rm T}) + H_{\rm K}(f+f_{\rm T})\right ] .$$

Damit werden

  • Modulator und Demodulator quasi gegeneinander gekürzt,
  • der Bandpasskanal $H_{\rm K}(f)$ in den Tiefpassbereich transformiert.


Die resultierende Übertragungsfunktion $H_{\rm MKD}(f)$ sollte man nicht mit der Tiefpass–Übertragungsfunktion $H_{\rm K, \, TP}(f)$ gemäß der Beschreibung im Kapitel Äquivalentes Tiefpass-Signal und zugehörige Spektralfunktion des Buches „Signaldarstellung” verwechseln, die sich aus $H_{\rm K}(f)$ durch Abschneiden der Anteile bei negativen Frequenzen sowie einer Frequenzverschiebung um $f_{\rm T}$ nach links ergibt. Bei Frequenzgängen muss im Gegensatz zu den Spektralfunktionen auf die Verdoppelung der Anteile bei positiven Frequenzen verzichtet werden.


Hinweise:


Fragebogen

1

Welche Aussagen gelten für die äquivalente Tiefpassfunktion $H_{\rm K, \, TP}(f)$ ?

Es gilt $H_{\rm K, \, TP}(f=0)= 2$.
Es gilt $H_{\rm K, \, TP}(f = \Delta f_{\rm K}/4) = 1$.
Es gilt $H_{\rm K, \, TP}(f = –\Delta f_{\rm K}/4) = 0.75$.
Die dazugehörige Zeitfunktion $h_{\rm K, \, TP}(t)$ ist komplex.

2

Welche Aussagen gelten für den Frequenzgang $H_{\rm MKD}(f)$ ?

Es gilt $H_{\rm MKD}(f=0)= 2$.
Es gilt $H_{\rm MKD}(f = \Delta f_{\rm K}/4) = 1$.
Es gilt $H_{\rm MKD}(f = –\Delta f_{\rm K}/4) = 0.75$.
Die dazugehörige Zeitfunktion $h_{\rm MKD}(t)$ ist komplex.

3

Berechnen Sie die Zeitfunktion $h_{\rm MKD}(t)$ . Geben Sie den Wert bei $t = 0$ an.

$ h_{\rm MKD}(t)/\Delta f_{\rm K} \ = \ $

4

Welche der folgenden Aussagen treffen zu?

$h_{\rm MKD}(t)$ hat äquidistante Nulldurchgänge im Abstand $1/\Delta f_{\rm K}$.
$h_{\rm MKD}(t)$ hat äquidistante Nulldurchgänge im Abstand $2/\Delta f_{\rm K}$.


Musterlösung

(1)  Richtig sind die die Aussagen 2, 3 und 4:

  • $H_{\rm K,TP}(f)$ ergibt sich aus $H_{\rm K}(f)$ durch Abschneiden der negativen Frequenzanteile sowie Verschieben um $f_{\rm T}$ nach links.
  • Bei Frequenzgängen wird – im Gegensatz zu Spektren – auf das Verdoppeln der Anteile bei positiven Frequenzen verzichtet. Deshalb gilt:
$$H_{\rm K,\hspace{0.04cm} TP}(f= 0) = H_{\rm K}(f= f_{\rm T})=1.$$
  • Wegen der reellen unsymmetrischen Spektralfunktionen $H_{\rm K,\hspace{0.04cm}TP}(f)$ ist die zugehörige Zeitfunktion (Fourierrücktransformierte) $h_{\rm K,\hspace{0.04cm}TP}(t)$ nach dem Zuordnungssatz komplex.
Tiefpassfunktionen für $H_{\rm K}(f)$

(2)  Hier ist nur der dritte Lösungsvorschlag richtig:

  • Die Spektralfunktion $H_{\rm MKD}(f)$ besitzt stets einen geraden Realteil. Demzufolge ist $h_{\rm MKD}(t)$ stets reell.
  • Hätte $H_{\rm K}(f)$ zusätzlich einen um $f_{\rm T}$ ungeraden Imaginärteil, so würde $H_{\rm MKD}(f)$ einen um $f = 0$ ungeraden Imaginärteil aufweisen. Damit wäre $h_{\rm MKD}(t)$ immer noch eine reelle Funktion.


Die Grafik verdeutlicht die Unterschiede zwischen $H_{\rm K,\hspace{0.04cm}TP}(f)$ und $H_{\rm MKD}(f)$. Die Anteile von $H_{\rm MKD}(f)$ im Bereich um $\pm 2f_{\rm T}$ müssen nicht weiter beachtet werden.


(3)  $H_{\rm MKD}(f)$ setzt sich additiv aus einem Rechteck und einem Dreieck zusammen, jeweils mit Breite $\delta f_{\rm K}$ und Höhe $0.5$. Daraus folgt:

$$h_{\rm MKD}(t) = \frac{\Delta f_{\rm K}}{2} \cdot {\rm si} (\pi \cdot \Delta f_{\rm K} \cdot t)+ \frac{\Delta f_{\rm K}}{4} \cdot {\rm si}^2 (\pi \cdot \frac{\Delta f_{\rm K}}{2} \cdot t)$$
$$ \Rightarrow \hspace{0.3cm}h_{\rm MKD}(t = 0) = \frac{\Delta f_{\rm K}}{2} + \frac{\Delta f_{\rm K}}{4} = 0.75 \cdot \Delta f_{\rm K}\hspace{0.3cm} \Rightarrow \hspace{0.3cm}h_{\rm MKD}(t = 0)/{\Delta f_{\rm K}} \hspace{0.1cm}\underline {= 0.75} .$$


(4)  Richtig ist der zweite Lösungsvorschlag:

  • Die erste si–Funktion besitzt zwar äquidistante Nulldurchgänge im Abstand $1/\Delta f_{\rm K}$.
  • Die äquidistanten Nulldurchgänge der gesamten Zeitfunktion $h_{\rm MKD}$ werden aber durch den zweiten Term bestimmt:
$$h_{\rm MKD}(t = \frac{1}{\Delta f_{\rm K}}) = \ \frac{\Delta f_{\rm K}}{2} \cdot {\rm si} (\pi )+ \frac{\Delta f_{\rm K}}{4} \cdot {\rm si}^2 (\pi/2) = \frac{\Delta f_{\rm K}}{4},$$
$$h_{\rm MKD}(t = \frac{2}{\Delta f_{\rm K}}) = \ \frac{\Delta f_{\rm K}}{2} \cdot {\rm si} (2\pi )+ \frac{\Delta f_{\rm K}}{4} \cdot {\rm si}^2 (\pi) = 0.$$