Aufgaben:Aufgabe 1.08: Vergleich ASK und BPSK: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
Zeile 57: Zeile 57:
 
===Musterlösung===
 
===Musterlösung===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)''' 
+
'''(1)'''&nbsp; Bereits aus den Gleichungen auf der Angabenseite ist ersichtlich, dass der <u>mittlere Lösungsvorschlag</u> richtig ist. Die Definitionsgleichungen lauten:
'''(2)'''&nbsp;
+
:$$\rm Q (\it x) = \ \frac{\rm 1}{\sqrt{\rm 2\pi}}\int_{\it
'''(3)'''&nbsp;
+
x}^{+\infty}\rm e^{\it -u^{\rm 2}/\rm 2}\,d \it u
'''(4)'''&nbsp;
+
\hspace{0.05cm},$$
'''(5)'''&nbsp;
+
:$$\rm erfc (\it x)  = \ \frac{\rm 2}{\sqrt{\rm
'''(6)'''&nbsp;
+
\pi}}\int_{\it x}^{+\infty}\rm e^{\it -u^{\rm 2}}\,d \it u
 +
\hspace{0.05cm}.$$
 +
Durch einfache Substitutionen kann der oben genannte Zusammenhang einfach nachgewiesen werden:
 +
:$$\rm Q ( x) = 1/2 \cdot \rm erfc (x/\sqrt{2}) \hspace{0.05cm}.$$
 +
 
 +
'''(2)'''&nbsp; Richtig sind die <u>beiden ersten Lösungsvorschläge:</u> Die Gleichungen gelten nur für den AWGN&ndash;Kanal und für einen optimalen Binärempfänger, zum Beispiel entsprechend des Matched&ndash;Filter&ndash;Ansatzes. Impulsinterferenzen &ndash; verursacht durch den Kanal oder das Empfangsfilter &ndash; werden damit nicht erfasst. Die genaue Sendeimpulsformung spielt dagegen keine Rolle, solange das Empfangsfilter $H_{\rm E}(f)$ an das Sendespektrum angepasst ist. Zwei unterschiedliche Sendeimpulsformer $H_{\rm S}(f)$ führen zur genau gleichen Fehlerwahrscheinlichkeit, wenn sie die gleiche Energie pro Bit aufweisen.
 +
 
 +
'''(3)'''&nbsp; Diese Ergebnisse können direkt aus der Tabelle abgelesen werden:
 +
:$$p_{\rm ASK} \hspace{0.1cm}\underline {= 0.343 \cdot 10^{-4}},\hspace{0.3cm}p_{\rm BPSK} \hspace{0.1cm}\underline {= 0.901 \cdot 10^{-8}}.$$
 +
 
 +
'''(4)'''&nbsp; Mit $E_{\rm B}/N_{0} = 8 \Rightarrow 10  \cdot \lg \ E_{\rm B}/N_{0} \approx 9 \ \rm dB$ erhält man folgende Fehlerwahrscheinlichkeiten:
 +
:$$p_{\rm ASK} \hspace{0.1cm}\underline {= 0.241 \cdot 10^{-2}},\hspace{0.3cm}p_{\rm BPSK} \hspace{0.1cm}\underline {= 0.336 \cdot 10^{-4}}.$$
 +
 
 +
'''(5)'''&nbsp; Aus der Teilaufgabe (3) folgt, dass bei der binären Phasenmodulation $10  \cdot \lg \ E_{\rm B}/N_{0} \approx 12 \ \rm dB$ erfüllt sein muss, damit $p_{\rm BPSK} \approx 10^{-8}$ möglich ist. Die angegebenen Gleichungen zeigen aber auch, dass die ASK–Kurve um $3 \ \rm dB$ (exakt $3.01 \ \rm dB$) rechts von der BPSK–Kurve liegt. Daraus folgt:
 +
:$$10 \cdot {\rm lg}\hspace{0.1cm}(E_{\rm B}/N_{\rm 0})_{\rm min}\hspace{0.1cm}\underline {\approx 15\,\,{\rm dB}} \hspace{0.05cm}.$$
 +
 
  
 
{{ML-Fuß}}
 
{{ML-Fuß}}

Version vom 6. November 2017, 21:35 Uhr

Fehlerwahrscheinlichkeiten von ASK und BPSK

Die Bitfehlerwahrscheinlichkeiten der Modulationsarten $Amplitude Shift Keying$ (ASK) sowie $Binary Shift Keying$ (BPSK) werden oft durch die beiden folgenden Gleichungen angegeben:

$$p_{\rm ASK} = \ {\rm Q}\left ( \sqrt{\frac{E_{\rm B}}{N_0 }} \hspace{0.1cm}\right ) = \ {1}/{2}\cdot {\rm erfc}\left ( \sqrt{\frac{E_{\rm B}}{2 \cdot N_0 }} \right ),$$
$$ p_{\rm BPSK} = \ {\rm Q}\left ( \sqrt{\frac{2 \cdot E_{\rm B}}{N_0 }} \hspace{0.1cm}\right ) = \ {1}/{2}\cdot {\rm erfc}\left ( \sqrt{\frac{E_{\rm B}}{ N_0 }} \right ).$$

Diese beiden Gleichungen sind in der beigefügten Tabelle ausgewertet. Dabei gilt:

  • $E_{\rm B}$ gibt die mittlere Energie pro Bit an.
  • $N_{0}$ ist die Rauschleistungsdichte.
  • Zwischen den Fehlerfunktionen Q$(x)$ und erfc$(x)$ besteht ein fester Zusammenhang.


Anzumerken ist, dass diese Gleichungen nicht allgemein gelten, sondern nur unter gewissen idealisierten Bedingungen. Diese Voraussetzungen sollen in dieser Aufgabe herausgearbeitet werden.

Hinweis:

Die Aufgabe gehört zum Themengebiet von Lineare digitale Modulation – Kohärente Demodulation.

Fragebogen

1

Welcher Zusammenhang besteht zwischen Q$(x)$ und erfc$(x)$?

Es gilt Q$(x) = 2\ \cdot$ erfc$(x)$,
Es gilt Q$(x) = 0.5\ \cdot$ erfc$(x/20.5)$,
Es gilt erfc$(x) = 0.5\ \cdot$ Q$(x/20.5)$.

2

Wann gelten die angegebenen Fehlerwahrscheinlichkeits–Gleichungen?

Sie gelten nur für den AWGN–Kanal.
Sie gelten nur für Matched–Filter–Empfänger (oder Varianten).
Die Gleichungen berücksichtigen Impulsinterferenzen.
Die Gleichungen gelten nur bei rechteckförmigen Signalen.

3

Wie lauten die Fehlerwahrscheinlichkeiten für $10 \cdot \lg \ E_{\rm B}/N_{0} = 12\ \rm dB$?

$ p_{\rm ASK} \ = \ $

$\ \cdot 10^{-4}$
$ p_{\rm BPSK} \ = \ $

$\ \cdot 10^{-8}$

4

Welche Fehlerwahrscheinlichkeiten ergeben sich für $E_{\rm B}/N_{0} = 8$?

$ p_{\rm ASK} \ = \ $

$\ \cdot 10^{-2}$
$ p_{\rm BPSK} \ = \ $

$\ \cdot 10^{-4}$

5

Die Fehlerwahrscheinlichkeit soll nicht größer werden als $10^{-8}$. Wie groß ist das erforderliche $10 \cdot \lg \ E_{\rm B}/N_{0}$ bei ASK?

$(E_{\rm B}/N_{0})_{\rm min} \ = \ $

$\ \rm dB $


Musterlösung

(1)  Bereits aus den Gleichungen auf der Angabenseite ist ersichtlich, dass der mittlere Lösungsvorschlag richtig ist. Die Definitionsgleichungen lauten:

$$\rm Q (\it x) = \ \frac{\rm 1}{\sqrt{\rm 2\pi}}\int_{\it x}^{+\infty}\rm e^{\it -u^{\rm 2}/\rm 2}\,d \it u \hspace{0.05cm},$$
$$\rm erfc (\it x) = \ \frac{\rm 2}{\sqrt{\rm \pi}}\int_{\it x}^{+\infty}\rm e^{\it -u^{\rm 2}}\,d \it u \hspace{0.05cm}.$$

Durch einfache Substitutionen kann der oben genannte Zusammenhang einfach nachgewiesen werden:

$$\rm Q ( x) = 1/2 \cdot \rm erfc (x/\sqrt{2}) \hspace{0.05cm}.$$

(2)  Richtig sind die beiden ersten Lösungsvorschläge: Die Gleichungen gelten nur für den AWGN–Kanal und für einen optimalen Binärempfänger, zum Beispiel entsprechend des Matched–Filter–Ansatzes. Impulsinterferenzen – verursacht durch den Kanal oder das Empfangsfilter – werden damit nicht erfasst. Die genaue Sendeimpulsformung spielt dagegen keine Rolle, solange das Empfangsfilter $H_{\rm E}(f)$ an das Sendespektrum angepasst ist. Zwei unterschiedliche Sendeimpulsformer $H_{\rm S}(f)$ führen zur genau gleichen Fehlerwahrscheinlichkeit, wenn sie die gleiche Energie pro Bit aufweisen.

(3)  Diese Ergebnisse können direkt aus der Tabelle abgelesen werden:

$$p_{\rm ASK} \hspace{0.1cm}\underline {= 0.343 \cdot 10^{-4}},\hspace{0.3cm}p_{\rm BPSK} \hspace{0.1cm}\underline {= 0.901 \cdot 10^{-8}}.$$

(4)  Mit $E_{\rm B}/N_{0} = 8 \Rightarrow 10 \cdot \lg \ E_{\rm B}/N_{0} \approx 9 \ \rm dB$ erhält man folgende Fehlerwahrscheinlichkeiten:

$$p_{\rm ASK} \hspace{0.1cm}\underline {= 0.241 \cdot 10^{-2}},\hspace{0.3cm}p_{\rm BPSK} \hspace{0.1cm}\underline {= 0.336 \cdot 10^{-4}}.$$

(5)  Aus der Teilaufgabe (3) folgt, dass bei der binären Phasenmodulation $10 \cdot \lg \ E_{\rm B}/N_{0} \approx 12 \ \rm dB$ erfüllt sein muss, damit $p_{\rm BPSK} \approx 10^{-8}$ möglich ist. Die angegebenen Gleichungen zeigen aber auch, dass die ASK–Kurve um $3 \ \rm dB$ (exakt $3.01 \ \rm dB$) rechts von der BPSK–Kurve liegt. Daraus folgt:

$$10 \cdot {\rm lg}\hspace{0.1cm}(E_{\rm B}/N_{\rm 0})_{\rm min}\hspace{0.1cm}\underline {\approx 15\,\,{\rm dB}} \hspace{0.05cm}.$$