Aufgabe 1.6Z: Rayleigh und Rice im Vergleich: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
Zeile 40: Zeile 40:
 
===Fragebogen===
 
===Fragebogen===
 
<quiz display=simple>
 
<quiz display=simple>
{Multiple-Choice
+
{Wie ergibt sich aus dem Rice&ndash;Modell ein idealer Kanal &#8658; H(f) = 1?
 
|type="[]"}
 
|type="[]"}
+ correct
+
- $x_0 = y_0 = 0, \sigma^2 = 1$.
- false
+
+ Mit $x_0 = 1, y_0 = 0, \sigma^2 = 0$.
 +
- Mit $x_0 = 0, y_0 = 1, \sigma^2 = 0$.
  
{Input-Box Frage
+
{Ermitteln Sie aus der komplexen $z(t)$&ndash;Darstellung auf der Angabenseite die verwendeten Rice&ndash;Parameter.
 
|type="{}"}
 
|type="{}"}
$xyz \ = \ ${ 5.4 3% } $ab$
+
$\sigma \ = \ $ { 0.316 3% }
 +
$x_0 \ = \ $ { 0.632 3% }
 +
$y_0 \ = \ $ { 0.632 3% }
 +
 
 +
{Bei welchem Kanal wird ${\rm Pr}(20 \cdot {\rm lg} \, |z(t)| &#8804; \ &ndash;6 \ \rm dB)$ größer sein?
 +
|type="[]"}
 +
+ Beim vorliegenden Rayleigh&ndash;Kanal.
 +
- Beim vorliegenden Rice&ndash;Kanal.
 +
- Die Wahrscheinlichkeiten sind näherungsweise gleich.
 +
 
 +
{Bei welchem Kanal wird ${\rm Pr}(20 \cdot {\rm lg} \, |z(t)| &#8804; 0 \ \rm dB)$ größer sein?
 +
|type="[]"}
 +
- ${\rm Pr}(20 \cdot {\rm lg} \, |z(t)| &#8804; 0 \ \rm dB)$ ist beim Rice&ndash;Kanal deutlich kleiner.
 +
- ${\rm Pr}(20 \cdot {\rm lg} \, |z(t)| &#8804; 0 \ \rm dB)$ ist beim Rice&ndash;Kanal deutlich größer.
 +
+ Die Wahrscheinlichkeiten sind näherungsweise gleich.
 +
 
 +
{Welche Aussagen treffen für ein BPSK&ndash;Sendesignal $s(t)$ zu, wenn man die komplexe Darstellung des Empfängersignals $r(t)$ betrachtet?
 +
|type="[]"}
 +
- Rayleigh&ndash;Fading bewirkt Punktwolken in Quadrant 1 und 3.
 +
+ Rice&ndash;Fading bewirkt Punktwolken in Quadrant 1 und 3.
 +
+ Bei Rayleigh ist die WDF von $|r(t)|$ gleich der WDF von $|z(t)|$.
 +
- Bei Rice ist die WDF von $|r(t)|$ gleich der WDF von $|z(t)|$.
 
</quiz>
 
</quiz>
  

Version vom 16. November 2017, 23:59 Uhr

Komplexer Faktor z(t) bei Rayleigh und Rice

In dieser Aufgabe sollen Rayleigh–Fading und Rice–Fading miteinander verglichen werden.

Die Grafik zeigt den komplexen Faktor $z(t) = x(t) + {\rm j} \cdot y(t)$ in der komplexen Ebene. Für das TP–Sendesignal $s(t) = 1$, was bezüglich eines BP–Systems einer Cosinusschwingung mit der Amplitude $1$ entspricht, ist das TP–Empfangssignal $r(t)$ identisch mit $z(t)$.

Das obere Diagramm beschreibt Rayleigh–Fading, wobei die Komponentensignale $x(t)$ und $y(t)$ jeweils gaußverteilt sind mit Varianz $\sigma^2$. Die Wahrscheinlichkeitsdichtefunktion des Betrags $a(t) = |z(t)|$ lautet für $a ≥ 0$:

$$f_a(a) = \frac{a}{\sigma^2} \cdot {\rm exp} [ -\frac{a^2 }{2\sigma^2}] \hspace{0.05cm}.$$

Der quadratische Erwartungswert von $z(t)$ ist $1$:

$${\rm E}\left [ |z(t)|^2 \right ] = 2 \sigma^2 = 1 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} \sigma = {1}/{\sqrt{2}} \approx 0.707 \hspace{0.05cm}.$$

Das untere Phasendiagramm entsteht bei Rice–Fading. Auch hier sind $x(t)$ und $y(t)$ gaußverteilt mit Varianz $\sigma^2$, aber nun mit Mittelwert $x_0$ bzw. $y_0$.

Die WDF lautet mit der modifizierten Besselfunktion ${\rm I}_0$ für $a ≥ 0$:

$$f_a(a) = \frac{a}{\sigma^2} \cdot {\rm exp} [ -\frac{a^2 + |z_0|^2}{2\sigma^2}] \cdot {\rm I}_0 \left [ \frac{a \cdot |z_0|}{\sigma^2} \right ]\hspace{0.05cm}.$$

Der quadratische Mittelwert beinhaltet nun auch die Direktkomponente $z_0 = x_0 + {\rm j} \cdot y_0$:

$${\rm E}\left [ |z(t)|^2 \right ] = 2 \cdot \sigma^2 + |z_0|^2 \hspace{0.05cm}.$$

Für den Systemvergleich

  • wird von konstantem ${\rm E}[|z(t)|^2] = 1$ ausgegangen,
  • wird beim Rice–Fading von der aus der Grafik erkennbaren Vorzugsrichtung ausgegangen,
  • sei die Leistung zwischen Direktpfad ($|z_0|^2$) Streupfaden ($2\sigma^2$) im Verhältnis $4:1$ aufgeteilt.


Für die Teilaufgaben (1) bis (4) gelte $s(t) = 1$, während in den Teilaufgaben (5) bzw. (6) ein BPSK–Signal vorausgesetzt wird. Das TP–Signal $s(t)$ hat somit einen rechteckförmigen Verlauf mit den möglichen Werten $±1$. Die Dauer eines Rechteckimpulses sei $T = 10 \ \rm ms$.

Hinweise:


Fragebogen

1

Wie ergibt sich aus dem Rice–Modell ein idealer Kanal ⇒ H(f) = 1?

$x_0 = y_0 = 0, \sigma^2 = 1$.
Mit $x_0 = 1, y_0 = 0, \sigma^2 = 0$.
Mit $x_0 = 0, y_0 = 1, \sigma^2 = 0$.

2

Ermitteln Sie aus der komplexen $z(t)$–Darstellung auf der Angabenseite die verwendeten Rice–Parameter.

$\sigma \ = \ $

$x_0 \ = \ $

$y_0 \ = \ $

3

Bei welchem Kanal wird ${\rm Pr}(20 \cdot {\rm lg} \, |z(t)| ≤ \ –6 \ \rm dB)$ größer sein?

Beim vorliegenden Rayleigh–Kanal.
Beim vorliegenden Rice–Kanal.
Die Wahrscheinlichkeiten sind näherungsweise gleich.

4

Bei welchem Kanal wird ${\rm Pr}(20 \cdot {\rm lg} \, |z(t)| ≤ 0 \ \rm dB)$ größer sein?

${\rm Pr}(20 \cdot {\rm lg} \, |z(t)| ≤ 0 \ \rm dB)$ ist beim Rice–Kanal deutlich kleiner.
${\rm Pr}(20 \cdot {\rm lg} \, |z(t)| ≤ 0 \ \rm dB)$ ist beim Rice–Kanal deutlich größer.
Die Wahrscheinlichkeiten sind näherungsweise gleich.

5

Welche Aussagen treffen für ein BPSK–Sendesignal $s(t)$ zu, wenn man die komplexe Darstellung des Empfängersignals $r(t)$ betrachtet?

Rayleigh–Fading bewirkt Punktwolken in Quadrant 1 und 3.
Rice–Fading bewirkt Punktwolken in Quadrant 1 und 3.
Bei Rayleigh ist die WDF von $|r(t)|$ gleich der WDF von $|z(t)|$.
Bei Rice ist die WDF von $|r(t)|$ gleich der WDF von $|z(t)|$.


Musterlösung

(1)  (2)  (3)  (4)  (5)