Applets:Zur Verdeutlichung des Matched-Filters: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
 
(17 dazwischenliegende Versionen von 2 Benutzern werden nicht angezeigt)
Zeile 1: Zeile 1:
 +
{{LntAppletLinkDeEn|matchedFilter|matchedFilter_en}}
  
{{LntAppletLink|abtastung}}
 
 
   
 
   
 
==Programmbeschreibung==
 
==Programmbeschreibung==
 
<br>
 
<br>
Das Applet soll die Eigenschaften des so genannten &bdquo;Matched-Filters&rdquo;&nbsp; $({\rm MF})$&nbsp; verdeutlichen.&nbsp; Dieses dient zur optimalen Bestimmung des Vorhandenseins (Detektion) der Amplitude und/oder der Lage einer bekannten Signalform in einer stark verrauschten Umgebung.&nbsp; Oder allgemeiner gesprochen:&nbsp; Das Matched-Filter &ndash; manchmal auch als &bdquo;Optimalfilter&rdquo;&nbsp; oder als &bdquo;Korrelationsfilter&rdquo;&nbsp; bezeichnet &ndash; dient dem Nachweis der Signalexistenz.&nbsp;  
+
Das Applet soll die Eigenschaften des so genannten &bdquo;Matched-Filters&rdquo;&nbsp; $({\rm MF})$&nbsp; verdeutlichen.&nbsp; Dieses dient zur optimalen Bestimmung&nbsp; $($Detektion$)$&nbsp; der Amplitude und/oder der Lage einer bekannten Signalform in einer stark verrauschten Umgebung. &nbsp; Oder allgemeiner gesprochen: &nbsp; Das Matched-Filter &ndash; manchmal auch als &bdquo;Optimalfilter&rdquo;&nbsp; oder als &bdquo;Korrelationsfilter&rdquo;&nbsp; bezeichnet &ndash; dient dem Nachweis der Signalexistenz.&nbsp;  
  
 
[[Datei:P_ID568__Sto_T_5_4_S1_neu.png |right|frame| Blockschaltbild des Matched-Filter-Empfängers]]
 
[[Datei:P_ID568__Sto_T_5_4_S1_neu.png |right|frame| Blockschaltbild des Matched-Filter-Empfängers]]
  
Die Grafik zeigt den so genannten&nbsp; '''Matched-Filter-Empfänger''':   
+
Die Grafik zeigt den so genannten&nbsp; &raquo;'''Matched-Filter-Empfänger'''&laquo;:   
  
 
*Dieser kann mit größtmöglicher Sicherheit – anders ausgedrückt: &nbsp; mit maximalem Signal&ndash;zu&ndash;Rausch&ndash;Verhältnis&nbsp; $($englisch:&nbsp; signal&ndash;to&ndash;noise&ndash;ratio,&nbsp; $\rm SNR)$&nbsp; – entscheiden, ob ein durch additives Rauschen&nbsp; $n(t)$&nbsp; gestörtes impulsförmiges Nutzsignal&nbsp; $g(t)$&nbsp; vorhanden ist oder nicht.
 
*Dieser kann mit größtmöglicher Sicherheit – anders ausgedrückt: &nbsp; mit maximalem Signal&ndash;zu&ndash;Rausch&ndash;Verhältnis&nbsp; $($englisch:&nbsp; signal&ndash;to&ndash;noise&ndash;ratio,&nbsp; $\rm SNR)$&nbsp; – entscheiden, ob ein durch additives Rauschen&nbsp; $n(t)$&nbsp; gestörtes impulsförmiges Nutzsignal&nbsp; $g(t)$&nbsp; vorhanden ist oder nicht.
*Eine Anwendung ist die Radartechnik, bei der man zwar die Impulsform&nbsp; $g(t)$&nbsp; kennt, nicht aber, wann der Impuls gesendet wurde und mit welcher Stärke und Verzögerung dieser ankommt.
 
*Das Matched-Filter wird aber auch als Empfangsfilter in digitalen Übertragungssystemen (oder zumindest als Teil davon) eingesetzt, um die Fehlerwahrscheinlichkeit des Systems zu minimieren.
 
  
 +
*Eine Anwendung ist die Radartechnik, bei der man zwar die Impulsform&nbsp; $g(t)$&nbsp; kennt,&nbsp; nicht aber,&nbsp; wann der Impuls gesendet wurde und mit welcher Stärke und Verzögerung dieser ankommt.
  
Alle Parameter, Zeiten und Frequenzen sind als normierte Größen zu verstehen und damit dimensionslos.
+
*Das Matched-Filter wird aber auch als Empfangsfilter in digitalen Systemen  eingesetzt,&nbsp; um die Fehlerwahrscheinlichkeit des Systems zu minimieren.  
  
* Für den '''Eingangsimpuls'''&nbsp; $g(t)$&nbsp; sind&nbsp; &bdquo;Rechteck&rdquo;,&nbsp; &bdquo;Gauß&rdquo;&nbsp; und&nbsp; &bdquo;Exponential&rdquo;&nbsp; einstellbar, die jeweils durch die Impulsamplitude&nbsp; $A_g$,&nbsp; die äquivalente Impulsdauer&nbsp; $\Delta t_g$&nbsp; sowie die Verschiebung&nbsp; $\tau_g$&nbsp; gegenüber dem (hinsichtlich Zeit) symmetrischen Fall beschrieben werden.&nbsp; Weitere Informationen im Abschnitt&nbsp; [[Applets:Zur_Verdeutlichung_des_Matched-Filters#Weitere_Angaben_zu_den_betrachteten_Eingangsimpulsen|Weitere Angaben zu den betrachteten Eingangsimpulsen]].
+
 
* Für das '''Empfangsfilter'''&nbsp; kann zwischen den Alternativen&nbsp; &bdquo;Spalt&ndash;Tiefpass&rdquo;,&nbsp; &bdquo;Gauß&ndash;Tiefpass&rdquo;,&nbsp; &bdquo;Tiefpass erster Ordnung&rdquo;und&nbsp; &bdquo;Tiefpass 4&rdquo;&nbsp; gewählt werden.&nbsp; Dargestellt werden die jeweiligen Impulsantworten&nbsp; $h(t)$,&nbsp; gekennzeichnet durch deren  Höhe&nbsp; $A_h$,&nbsp; die äquivalente Dauer&nbsp; $\Delta t_h$&nbsp; und die Verschiebung&nbsp; $\tau_h$.&nbsp; Weitere Informationen im Abschnitt&nbsp; [[Applets:Zur_Verdeutlichung_des_Matched-Filters#Weitere_Angaben_zu_den_betrachteten_Impulsantworten|Weitere Angaben zu den betrachteten Impulsantworten]].  
+
Alle Parameter,&nbsp; Zeiten und Frequenzen sind als normierte Größen zu verstehen und damit dimensionslos.
 +
 
 +
* Für den&nbsp; &raquo;'''Eingangsimpuls'''&laquo;&nbsp; $g(t)$&nbsp; sind&nbsp; &bdquo;Rechteck&rdquo;,&nbsp; &bdquo;Gauß&rdquo;&nbsp; und&nbsp; &bdquo;Exponential&rdquo;&nbsp; einstellbar,&nbsp; die jeweils durch die Impulsamplitude&nbsp; $A_g$,&nbsp; die äquivalente Impulsdauer&nbsp; $\Delta t_g$&nbsp; sowie die Verschiebung&nbsp; $\tau_g$&nbsp; gegenüber dem&nbsp; $($hinsichtlich Zeit$)$ symmetrischen Fall beschrieben werden.&nbsp; Weitere Informationen im Abschnitt&nbsp; [[Applets:Zur_Verdeutlichung_des_Matched-Filters#Weitere_Angaben_zu_den_betrachteten_Eingangsimpulsen|&raquo;Weitere Angaben zu den betrachteten Eingangsimpulsen&laquo;]].
 +
 
 +
* Für das&nbsp; &raquo;'''Empfangsfilter'''&laquo;&nbsp; kann zwischen den Alternativen&nbsp; &bdquo;Spalt&ndash;Tiefpass&rdquo;,&nbsp; &bdquo;Gauß&ndash;Tiefpass&rdquo;,&nbsp; &bdquo;Tiefpass erster Ordnung&rdquo;und&nbsp; &bdquo;extrem akausales Filter&rdquo;&nbsp; gewählt werden.&nbsp; Dargestellt werden die jeweiligen Impulsantworten&nbsp; $h(t)$,&nbsp; gekennzeichnet durch deren  Höhe&nbsp; $A_h$,&nbsp; die äquivalente Dauer&nbsp; $\Delta t_h$&nbsp; und die Verschiebung&nbsp; $\tau_h$.&nbsp; Weitere Informationen im Abschnitt&nbsp; [[Applets:Zur_Verdeutlichung_des_Matched-Filters#Weitere_Angaben_zu_den_betrachteten_Impulsantworten|Weitere Angaben zu den betrachteten Impulsantworten]].
 +
 
* Weitere Eingabeparameter sind der Detektionszeitpunkt&nbsp; $T_{\rm D}$&nbsp; sowie die ebenfalls normierte Rauschleistungsdichte&nbsp; $N_0$&nbsp; am Empfängereingang.
 
* Weitere Eingabeparameter sind der Detektionszeitpunkt&nbsp; $T_{\rm D}$&nbsp; sowie die ebenfalls normierte Rauschleistungsdichte&nbsp; $N_0$&nbsp; am Empfängereingang.
  
  
 
Als Numerikwerte ausgegeben werden
 
Als Numerikwerte ausgegeben werden
*die Energie&nbsp; $E_g$&nbsp; des Eingangsimpulses&nbsp; $g(t)$,&nbsp; der Nutzabtastwert&nbsp; $d_{\rm S} (T_{\rm D})$&nbsp; am Filterausgang sowie die Rauschvarianz&nbsp; $\sigma_d^2$&nbsp; am Filterausgang,
+
#die Energie&nbsp; $E_g$&nbsp; des Eingangsimpulses&nbsp; $g(t)$,&nbsp; der Nutzabtastwert&nbsp; $d_{\rm S} (T_{\rm D})$&nbsp; am Filterausgang sowie die Rauschvarianz&nbsp; $\sigma_d^2$&nbsp; am Filterausgang,
*das Signal&ndash;zu&ndash;Rausch&ndash;Verhältnis&nbsp; $\rm (SNR)$&nbsp; $\rho_{d} (T_{\rm D})$&nbsp; am Filterausgang und die zugehörige dB&ndash;Angabe&nbsp; $10 \cdot \lg \ \rho_{d} (T_{\rm D})$,
+
#das Signal&ndash;zu&ndash;Rausch&ndash;Verhältnis&nbsp; $\rm (SNR)$&nbsp; $\rho_{d} (T_{\rm D})$&nbsp; am Filterausgang und die zugehörige dB&ndash;Angabe&nbsp; $10 \cdot \lg \ \rho_{d} (T_{\rm D})$,
*der hierfür maximale Wert&nbsp; $10 \cdot \lg \ \rho_{\rm MF}$.&nbsp;  
+
#der hierfür maximale Wert&nbsp; $10 \cdot \lg \ \rho_{\rm MF}$.&nbsp;  
  
  
Erfüllt die eingegebene Konfiguration die Matched-Filter-Bedingungen, dann gilt: &nbsp; $10 \cdot \lg \ \rho_{d} (T_{\rm D,\ opt}) = 10 \cdot \lg \ \rho_{\rm MF}$.    
+
Erfüllt die eingegebene Konfiguration die Matched-Filter-Bedingungen,&nbsp; dann gilt: &nbsp;  
 +
$$10 \cdot \lg \ \rho_{d} (T_{\rm D,\ opt}) = 10 \cdot \lg \ \rho_{\rm MF}.$$     
  
  
Zeile 35: Zeile 40:
 
===Detailbeschreibung des zugrunde liegenden Modells===  
 
===Detailbeschreibung des zugrunde liegenden Modells===  
  
Für die einzelnen Komponenten des obigen Blockschaltbild gelten folgende Voraussetzungen:  
+
Für die einzelnen Komponenten gelten folgende Voraussetzungen:  
*Der Nutzanteil&nbsp; $g(t)$&nbsp; des Empfangssignals&nbsp; $r(t)=g(t)+n(t)$&nbsp; sei impulsförmig und somit&nbsp; ''energiebegrenzt''.&nbsp; Das heißt: &nbsp; Das Integral über&nbsp; $ [g(t) ]^2$&nbsp; von&nbsp; $–∞$&nbsp; bis&nbsp; $+∞$&nbsp; liefert den endlichen Wert&nbsp; $E_g$.  
+
*Der Nutzanteil&nbsp; $g(t)$&nbsp; des Empfangssignals&nbsp; $r(t)=g(t)+n(t)$&nbsp; sei impulsförmig und somit&nbsp; "energiebegrenzt".  
*Das Störsignal&nbsp; $n(t)$&nbsp; sei&nbsp; ''Weißes Gaußsches Rauschen''&nbsp; mit der Rauschleistungsdichte&nbsp; $N_0$.  
+
*Das heißt: &nbsp; Das Integral über&nbsp; $\big [g(t)\big ]^2$&nbsp; von&nbsp; $–∞$&nbsp; bis&nbsp; $+∞$&nbsp; liefert den endlichen Wert&nbsp; $E_g$.  
*Das Filterausgangssignal&nbsp; $d(t)= d_{\rm S}(t) + d_{\rm N}(t)$&nbsp; besteht additiv aus zwei Anteilen.&nbsp; Der Anteil&nbsp; $d_{\rm S}(t)$&nbsp; geht auf das&nbsp; $\rm S\hspace{0.04cm}$ignal&nbsp; $g(t)$&nbsp; zurück, &nbsp; $d_{\rm N}(t)$&nbsp; auf das&nbsp; $\rm N\hspace{0.04cm}$oise&nbsp; $n(t)$.  
+
*Das Störsignal&nbsp; $n(t)$&nbsp; sei&nbsp; "Weißes Gaußsches Rauschen"&nbsp; mit der&nbsp; (einseitigen)&nbsp;  Rauschleistungsdichte&nbsp; $N_0$.  
*Der Empfänger, bestehend aus einem linearen Filter &nbsp;  ⇒ &nbsp;  Frequenzgang&nbsp; $H_{\rm MF}(f)$&nbsp; und dem Entscheider, ist so zu dimensionieren, dass das momentane S/N-Verhältnis am Ausgang maximal wird:  
+
*Das Filterausgangssignal&nbsp; $d(t)$&nbsp; setzt sich aus zwei Anteilen zusammen.&nbsp; Der Anteil&nbsp; $d_{\rm S}(t)$&nbsp; geht auf das&nbsp; "$\rm S$"ignal&nbsp; $g(t)$&nbsp; zurück, der Anteil&nbsp; $d_{\rm N}(t)$&nbsp; auf das&nbsp; "$\rm N$"oise&nbsp; $n(t)$.  
:$$\rho _d ( {T_{\rm D} } ) = \frac{ {d_{\rm S} ^2 ( {T_{\rm D} } )} }{ {\sigma_d^2 } }\mathop  = \limits^{\rm{!} }\hspace{0.1cm} {\rm{Maximum} }.$$
+
*Der Empfänger,&nbsp; bestehend aus einem linearen Filter &nbsp;  ⇒ &nbsp;  Frequenzgang&nbsp; $H_{\rm MF}(f)$&nbsp; und dem Entscheider,&nbsp; ist so zu dimensionieren,&nbsp; dass das momentane S/N-Verhältnis am Ausgang maximal wird:  
*Hierbei bezeichnen &nbsp;${σ_d}^2$&nbsp; die&nbsp; ''Varianz''&nbsp; (Leistung) von $d_{\rm N}(t)$ und &nbsp;$T_{\rm D}$&nbsp; den (geeignet gewählten)&nbsp; ''Detektionszeitpunkt.''
+
:$$\rho _d ( {T_{\rm D} } ) = \frac{ {d_{\rm S} ^2 ( {T_{\rm D} } )} }{ {\sigma _d ^2 } }\mathop  = \limits^{\rm{!} }\hspace{0.1cm} {\rm{Maximum} }.$$
 +
*Hierbei bezeichnen &nbsp;$σ_d^2$&nbsp; die&nbsp; Varianz&nbsp; $($"Leistung"$)$&nbsp; des Störanteils&nbsp; $d_{\rm N}(t)$&nbsp; und &nbsp;$T_{\rm D}$&nbsp; den&nbsp; $($geeignet gewählten$)$&nbsp; "Detektionszeitpunkt".
 
   
 
   
  
 
===Matched-Filter-Optimierung===
 
===Matched-Filter-Optimierung===
  
Gegeben sei ein energiebegrenztes Nutzsignal&nbsp; $g(t)$&nbsp; mit dem zugehörigen Spektrum&nbsp; $G(f)$.&nbsp; Damit kann das Filterausgangssignal zum Detektionszeitpunkt&nbsp; $T_{\rm D}$&nbsp; für jedes beliebige Filter mit Impulsantwort&nbsp; $h(t)$&nbsp; und Frequenzgang&nbsp; $H(f) =\mathcal{ F}\{h(t)\}$ geschrieben werden&nbsp; (ohne Berücksichtigung des Rauschens &nbsp; ⇒ &nbsp; Index &nbsp;$\rm S$&nbsp; für „Signal”):  
+
Gegeben sei ein energiebegrenztes Nutzsignal&nbsp; $g(t)$&nbsp; mit dem zugehörigen Spektrum&nbsp; $G(f)$.  
 +
*Damit kann das Filterausgangssignal zum Detektionszeitpunkt&nbsp; $T_{\rm D}$&nbsp; für jedes beliebige Filter mit der Impulsantwort&nbsp; $h(t)$&nbsp; und dem Frequenzgang&nbsp; $H(f) =\mathcal{ F}\{h(t)\}$ wie folgt geschrieben werden&nbsp; $($ohne Berücksichtigung des Rauschens &nbsp; ⇒ &nbsp; Index &nbsp;$\rm S$&nbsp; für „Signal”$)$:  
 
:$$d_{\rm S} ( {T_{\rm D} } ) = g(t) * h(t) = \int_{ - \infty }^{ + \infty } {G(f) \cdot H(f) \cdot {\rm{e}}^{ {\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 2\pi \hspace{0.05cm}\cdot \hspace{0.05cm}f \hspace{0.05cm}\cdot \hspace{0.05cm}T_{\rm D}  }\hspace{0.1cm} {\rm{d}}f} .$$
 
:$$d_{\rm S} ( {T_{\rm D} } ) = g(t) * h(t) = \int_{ - \infty }^{ + \infty } {G(f) \cdot H(f) \cdot {\rm{e}}^{ {\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 2\pi \hspace{0.05cm}\cdot \hspace{0.05cm}f \hspace{0.05cm}\cdot \hspace{0.05cm}T_{\rm D}  }\hspace{0.1cm} {\rm{d}}f} .$$
 
+
*Der&nbsp; „Rauschanteil”&nbsp; $d_{\rm N}(t)$&nbsp; des Filterausgangssignals&nbsp; $($Index &nbsp;$\rm N$&nbsp; für „Noise”$)$&nbsp; rührt allein vom Weißen Rauschen&nbsp; $n(t)$&nbsp; am Eingang des Empfängers her.&nbsp; Für seine Varianz gilt unabhängig vom Detektionszeitpunkt&nbsp; $T_{\rm D}$:  
Der&nbsp; „Rauschanteil”&nbsp; $d_{\rm N}(t)$&nbsp; des Filterausgangssignals&nbsp; (Index &nbsp;$\rm N$&nbsp; für „Noise”) rührt allein vom Weißen Rauschen&nbsp; $n(t)$&nbsp; am Eingang des Empfängers her.&nbsp; Für seine Varianz (Leistung) gilt unabhängig vom Detektionszeitpunkt&nbsp; $T_{\rm D}$:  
 
 
:$$\sigma _d ^2  = \frac{ {N_0 } }{2} \cdot \int_{ - \infty }^{ + \infty } {\left| {H(f)} \right|^{\rm{2} }\hspace{0.1cm} {\rm{d} }f} .$$
 
:$$\sigma _d ^2  = \frac{ {N_0 } }{2} \cdot \int_{ - \infty }^{ + \infty } {\left| {H(f)} \right|^{\rm{2} }\hspace{0.1cm} {\rm{d} }f} .$$
Damit lautet das hier vorliegende Optimierungsproblem:
+
*Damit lautet das hier vorliegende Optimierungsproblem:
 
:$$\rho _d ( {T_{\rm D} } ) = \frac{ {\left| {\int_{ - \infty }^{ + \infty } {G(f) \cdot H(f) \cdot {\rm{e} }^{ {\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 2\pi \hspace{0.05cm}\cdot \hspace{0.05cm}f \hspace{0.05cm}\cdot \hspace{0.05cm}T_{\rm D}  }\hspace{0.1cm} {\rm{d} }f} } \right|^2 } }{ {N_0 /2 \cdot \int_{ - \infty }^{ + \infty } {\left| {H(f)} \right|^{\rm{2} }\hspace{0.1cm} {\rm{d} }f} } }  \stackrel{!}{=} {\rm{Maximum} }.$$
 
:$$\rho _d ( {T_{\rm D} } ) = \frac{ {\left| {\int_{ - \infty }^{ + \infty } {G(f) \cdot H(f) \cdot {\rm{e} }^{ {\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 2\pi \hspace{0.05cm}\cdot \hspace{0.05cm}f \hspace{0.05cm}\cdot \hspace{0.05cm}T_{\rm D}  }\hspace{0.1cm} {\rm{d} }f} } \right|^2 } }{ {N_0 /2 \cdot \int_{ - \infty }^{ + \infty } {\left| {H(f)} \right|^{\rm{2} }\hspace{0.1cm} {\rm{d} }f} } }  \stackrel{!}{=} {\rm{Maximum} }.$$
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
Dieser Quotient wird für den folgenden Frequenzgang&nbsp; $H(f)$&nbsp; am größten wird:  
+
$\text{Hier zunächst ohne Beweis:}$&nbsp; &nbsp; Man kann zeigen,&nbsp; dass dieser Quotient für den folgenden Frequenzgang&nbsp; $H(f)$&nbsp; am größten wird:  
 
:$$H(f) = H_{\rm MF} (f) = K_{\rm MF}  \cdot G^{\star}  (f) \cdot {\rm e}^{- {\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 2\pi \hspace{0.05cm}\cdot \hspace{0.05cm}f \hspace{0.05cm}\cdot \hspace{0.05cm}T_{\rm D}  } . $$
 
:$$H(f) = H_{\rm MF} (f) = K_{\rm MF}  \cdot G^{\star}  (f) \cdot {\rm e}^{- {\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 2\pi \hspace{0.05cm}\cdot \hspace{0.05cm}f \hspace{0.05cm}\cdot \hspace{0.05cm}T_{\rm D}  } . $$
 
*Damit erhält man für das Signal&ndash;zu&ndash;Rauschleistungsverhältnis am Matched&ndash;Filter&ndash;Ausgang&nbsp; $($unabhängig von der dimensionsbehafteten Konstante&nbsp; $K_{\rm MF})$:  
 
*Damit erhält man für das Signal&ndash;zu&ndash;Rauschleistungsverhältnis am Matched&ndash;Filter&ndash;Ausgang&nbsp; $($unabhängig von der dimensionsbehafteten Konstante&nbsp; $K_{\rm MF})$:  
:$$\rho _d ( {T_{\rm D} } ) = { {2 \cdot E_g } }/{ {N_0 } } \hspace{0.5cm}\Rightarrow \hspace{0.5cm} \rho _{\rm MF}.$$
+
:$$\rho _d ( {T_{\rm D} } ) = { {2 \cdot E_g } }/{ {N_0 } }.$$
  
* $E_g$ bezeichnet die Energie des Eingangsimpulses, die man nach dem&nbsp; [https://de.wikipedia.org/wiki/Satz_von_Parseval Satz von Parseval]&nbsp; sowohl im Zeit– als auch im Frequenzbereich berechnen kann:
+
* $E_g$&nbsp; bezeichnet die Energie des Eingangsimpulses,&nbsp; die man nach dem&nbsp; [https://de.wikipedia.org/wiki/Satz_von_Parseval &raquo;Satz von Parseval&laquo;]&nbsp; sowohl im Zeit– als auch im Frequenzbereich berechnen kann:
 
:$$E_g  = \int_{ - \infty }^{ + \infty } {g^2 (t)\hspace{0.1cm}{\rm{d} }t}  = \int_{ - \infty }^{ + \infty } {\left \vert {G(f)} \right\vert ^{\rm{2} }\hspace{0.1cm} {\rm d}f} .$$}}
 
:$$E_g  = \int_{ - \infty }^{ + \infty } {g^2 (t)\hspace{0.1cm}{\rm{d} }t}  = \int_{ - \infty }^{ + \infty } {\left \vert {G(f)} \right\vert ^{\rm{2} }\hspace{0.1cm} {\rm d}f} .$$}}
  
 +
 +
{{GraueBox|TEXT= 
 +
$\text{Beispiel 1:}$&nbsp; &nbsp;Ein rechteckförmiger Impuls&nbsp; $g(t)$&nbsp; mit Amplitude&nbsp; $\rm 1\hspace{0.05cm}V$,&nbsp; Dauer&nbsp; $0.5\hspace{0.05cm} \rm ms$&nbsp; und unbekannter Lage soll in einer verrauschten Umgebung aufgefunden werden.
 +
*Somit ist die Impulsenergie&nbsp; $E_g = \rm 5 · 10^{–4} \hspace{0.05cm}V^2s$.
 +
 +
*Die Rauschleistungsdichte sei&nbsp; $N_0 = \rm 10^{–6} \hspace{0.05cm}V^2/Hz$.
 +
 +
 +
Das beste Ergebnis  &nbsp; ⇒  &nbsp; das &nbsp; &raquo;'''maximale S/N–Verhältnis'''&laquo; &nbsp; erzielt man mit dem Matched-Filter:
 +
:$$\rho _d ( {T_{\rm D} } ) = \frac{ {2 \cdot E_g } }{ {N_0 } } =
 +
\frac{ {2 \cdot 5 \cdot 10^{-4}\, {\rm V^2\,s} } }{ {10^{-6}\, {\rm V^2/Hz} } } = 1000
 +
\hspace{0.3cm}\Rightarrow\hspace{0.3cm}
 +
10 \cdot {\rm lg}\hspace{0.15cm}\rho _d ( {T_{\rm D} } ) = 30\,{\rm dB}.$$}}
 +
 +
 +
Dieses Matched–Filter–Kriterium wird nun schrittweise hergeleitet.&nbsp; Wenn Sie daran nicht interessiert sind,&nbsp; dann springen Sie zur Seite&nbsp; [[Stochastische_Signaltheorie/Matched-Filter#Interpretation_des_Matched-Filters|&raquo;Interpretation des Matched–Filters&laquo;]].
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
Zeile 79: Zeile 101:
  
 
$\text{Das heißt:}$  
 
$\text{Das heißt:}$  
*Mit dem Ansatz&nbsp; $(4)$&nbsp; für das Matched&ndash;Filter $H_{\rm MF}(f)$ wird in obiger Abschätzung tatsächlich der maximal mögliche Wert erreicht.  
+
*Mit dem Ansatz&nbsp; $(4)$&nbsp; für das Matched&ndash;Filter&nbsp; $H_{\rm MF}(f)$&nbsp; wird in obiger Abschätzung tatsächlich der maximal mögliche Wert erreicht.  
 +
 
 
*Mit keinem anderen Filter&nbsp; $H(f) ≠ H_{\rm MF}(f)$&nbsp; kann man ein höheres Signal&ndash;zu&ndash;Rauschleistungsverhältnis erzielen.
 
*Mit keinem anderen Filter&nbsp; $H(f) ≠ H_{\rm MF}(f)$&nbsp; kann man ein höheres Signal&ndash;zu&ndash;Rauschleistungsverhältnis erzielen.
 +
 
*Das Matched–Filter ist in Bezug auf das ihm zugrunde gelegte Maximierungskriterium optimal.
 
*Das Matched–Filter ist in Bezug auf das ihm zugrunde gelegte Maximierungskriterium optimal.
 
<div align="right">'''q.e.d.'''</div>
 
<div align="right">'''q.e.d.'''</div>
 
}}
 
}}
 
 
{{GraueBox|TEXT= 
 
$\text{Beispiel 1:}$&nbsp; &nbsp;Ein rechteckförmiger Impuls&nbsp; $g(t)$&nbsp; mit Amplitude&nbsp; $\rm 1\hspace{0.05cm}V$,&nbsp; Dauer&nbsp; $0.5\hspace{0.05cm} \rm ms$&nbsp; und unbekannter Lage soll in einer verrauschten Umgebung aufgefunden werden.
 
*Somit ist die Impulsenergie&nbsp; $E_g = \rm 5 · 10^{–4} \hspace{0.05cm}V^2s$.
 
*Die Rauschleistungsdichte sei&nbsp; $N_0 = \rm 10^{–6} \hspace{0.05cm}V^2/Hz$.
 
 
 
Das beste Ergebnis  &nbsp; ⇒  &nbsp; das&nbsp; '''maximale S/N–Verhältnis'''&nbsp; erzielt man mit dem Matched-Filter:
 
:$$\rho _d ( {T_{\rm D} } ) = \frac{ {2 \cdot E_g } }{ {N_0 } } =
 
\frac{ {2 \cdot 5 \cdot 10^{-4}\, {\rm V^2\,s} } }{ {10^{-6}\, {\rm V^2/Hz} } } = 1000
 
\hspace{0.3cm}\Rightarrow\hspace{0.3cm}
 
10 \cdot {\rm lg}\hspace{0.15cm}\rho _d ( {T_{\rm D} } ) = 30\,{\rm dB}= 10 \cdot {\rm lg}\hspace{0.15cm}\rho_{\rm MF}.$$}}
 
  
  
Zeile 103: Zeile 114:
 
Auf der letzten Seite wurde der Frequenzgang des Matched-Filters wie folgt hergeleitet:  
 
Auf der letzten Seite wurde der Frequenzgang des Matched-Filters wie folgt hergeleitet:  
 
:$$H_{\rm MF} (f) = K_{\rm MF}  \cdot G^{\star}  (f) \cdot {\rm{e} }^{- {\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 2\pi \hspace{0.05cm}\cdot \hspace{0.05cm}f \hspace{0.05cm}\cdot \hspace{0.05cm}T_{\rm D}  } .$$
 
:$$H_{\rm MF} (f) = K_{\rm MF}  \cdot G^{\star}  (f) \cdot {\rm{e} }^{- {\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 2\pi \hspace{0.05cm}\cdot \hspace{0.05cm}f \hspace{0.05cm}\cdot \hspace{0.05cm}T_{\rm D}  } .$$
Durch&nbsp; [[Signaldarstellung/Fouriertransformation_und_-rücktransformation#Das_zweite_Fourierintegral|Fourierrücktransformation]]&nbsp; erhält man die dazugehörige Impulsantwort:  
+
Durch&nbsp; [[Signaldarstellung/Fouriertransformation_und_-rücktransformation#Das_zweite_Fourierintegral|&raquo;Fourierrücktransformation&laquo;]]&nbsp; erhält man die dazugehörige Impulsantwort:  
 
:$$h_{\rm MF} (t) = K_{\rm MF}  \cdot g(T_{\rm D}  - t).$$
 
:$$h_{\rm MF} (t) = K_{\rm MF}  \cdot g(T_{\rm D}  - t).$$
  
 
Diese beiden Funktionen lassen sich wie folgt interpretieren:  
 
Diese beiden Funktionen lassen sich wie folgt interpretieren:  
*Das&nbsp; ''Matched-Filter''&nbsp; ist durch den Term &nbsp;$G^{\star}(f)$&nbsp; an das Spektrum des aufzufindenden Impulses &nbsp;$g(t)$&nbsp; angepasst – daher sein Name (englisch: ''to match'' ≡ anpassen).  
+
*Das&nbsp; Matched-Filter&nbsp; ist durch den Term &nbsp;$G^{\star}(f)$&nbsp; an das Spektrum des aufzufindenden Impulses &nbsp;$g(t)$&nbsp; angepasst – daher sein Name&nbsp; $($englisch:&nbsp; "to match" ≡ anpassen$)$.
*Die&nbsp; ''Konstante'' &nbsp;$K_{\rm MF}$&nbsp; ist aus Dimensionsgründen notwendig.  
+
*Ist&nbsp; $g(t)$&nbsp; ein Spannungsimpuls, so hat diese Konstante die Einheit „Hz/V”.&nbsp; Der Frequenzgang ist somit dimensionslos.  
+
*Die&nbsp; Konstante &nbsp;$K_{\rm MF}$&nbsp; ist aus Dimensionsgründen notwendig.
*Die&nbsp; ''Impulsantwort'' &nbsp;$h_{\rm MF}(t)$&nbsp; ergibt sich aus dem Nutzsignal &nbsp;$g(t)$&nbsp; durch Spiegelung &nbsp; ⇒ &nbsp; aus $g(t)$ wird $g(–t)$ &nbsp; &nbsp;  sowie einer Verschiebung um&nbsp; $T_{\rm D}$&nbsp; nach rechts.  
+
*Der&nbsp; ''früheste Detektionszeitpunkt'' &nbsp;$T_{\rm D}$&nbsp; folgt für realisierbare Systeme aus der Bedingung&nbsp; $h_{\rm MF}(t < 0)\equiv 0$ &nbsp; $($„Kausalität”,&nbsp; siehe Buch [[Lineare_zeitinvariante_Systeme|Lineare zeitinvariante Systeme]]$)$.  
+
*Ist&nbsp; $g(t)$&nbsp; ein Spannungsimpuls,&nbsp; so hat diese Konstante die Einheit „Hz/V”.&nbsp; Der Frequenzgang ist somit dimensionslos.  
*Der&nbsp; ''Nutzanteil'' &nbsp;$d_{\rm S} (t)$&nbsp; des Filterausgangssignals ist formgleich mit der&nbsp; [[Digitalsignalübertragung/Grundlagen_der_codierten_Übertragung#AKF.E2.80.93Berechnung_eines_Digitalsignals|Energie-AKF]] &nbsp; $\varphi^{^{\bullet} }_{g} (t )$&nbsp; und gegenüber dieser um &nbsp;$T_{\rm D}$&nbsp; verschoben. Es gilt:  
+
 
 +
*Die&nbsp; Impulsantwort &nbsp;$h_{\rm MF}(t)$&nbsp; ergibt sich aus dem Nutzsignal &nbsp;$g(t)$&nbsp; durch Spiegelung &nbsp; ⇒ &nbsp; aus&nbsp; $g(t)$&nbsp; wird&nbsp; $g(–t)$&nbsp; $ ]$&nbsp;  sowie einer Verschiebung um&nbsp; $T_{\rm D}$&nbsp; nach rechts.
 +
 +
*Der&nbsp; früheste Detektionszeitpunkt &nbsp;$T_{\rm D}$&nbsp; folgt für realisierbare Systeme aus der Bedingung&nbsp; $h_{\rm MF}(t < 0)\equiv 0$ &nbsp; $($Kausalität,&nbsp; siehe Buch&nbsp; [[Lineare_zeitinvariante_Systeme|"Lineare zeitinvariante Systeme"]]$)$.
 +
 +
*Der&nbsp; Nutzanteil &nbsp;$d_{\rm S} (t)$&nbsp; des Filterausgangssignals ist formgleich mit der&nbsp; [[Digitalsignalübertragung/Grundlagen_der_codierten_Übertragung#AKF.E2.80.93Berechnung_eines_Digitalsignals|Energie-AKF]] &nbsp; $\varphi^{^{\bullet} }_{g} (t )$&nbsp; und gegenüber dieser um &nbsp;$T_{\rm D}$&nbsp; verschoben. Es gilt:  
 
:$$d_{\rm S} (t) = g(t) * h_{\rm MF} (t) = K_{\rm MF}  \cdot g(t) * g(T_{\rm D}  - t) = K_{\rm MF}  \cdot \varphi^{^{\bullet} }_{g} (t - T_{\rm D} ).$$
 
:$$d_{\rm S} (t) = g(t) * h_{\rm MF} (t) = K_{\rm MF}  \cdot g(t) * g(T_{\rm D}  - t) = K_{\rm MF}  \cdot \varphi^{^{\bullet} }_{g} (t - T_{\rm D} ).$$
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
 
$\text{Bitte beachten Sie:}$&nbsp;  
 
$\text{Bitte beachten Sie:}$&nbsp;  
Bei einem energiebegrenzten Signal&nbsp; $g(t)$&nbsp; kann man nur die&nbsp; ''Energie–AKF''&nbsp; angeben:
+
Bei einem energiebegrenzten Signal&nbsp; $g(t)$&nbsp; kann man nur die&nbsp; '''Energie–AKF'''&nbsp; angeben:
 
:$$\varphi^{^{\bullet} }_g (\tau ) = \int_{ - \infty }^{ + \infty } {g(t) \cdot g(t + \tau )\,{\rm{d} }t} .$$
 
:$$\varphi^{^{\bullet} }_g (\tau ) = \int_{ - \infty }^{ + \infty } {g(t) \cdot g(t + \tau )\,{\rm{d} }t} .$$
Gegenüber der AKF-Definition eines leistungsbegrenzten Signals&nbsp; $x(t)$, nämlich
+
Gegenüber der AKF-Definition eines leistungsbegrenzten Signals&nbsp; $x(t)$,&nbsp; nämlich
 
:$$\varphi _x (\tau ) = \mathop {\lim }_{T_{\rm M}  \to \infty } \frac{1}{ {T_{\rm M} } }\int_{ - T_{\rm M} /2}^{+T_{\rm M} /2} {x(t) \cdot x(t + \tau )\hspace{0.1cm}\,{\rm{d} }t} ,$$
 
:$$\varphi _x (\tau ) = \mathop {\lim }_{T_{\rm M}  \to \infty } \frac{1}{ {T_{\rm M} } }\int_{ - T_{\rm M} /2}^{+T_{\rm M} /2} {x(t) \cdot x(t + \tau )\hspace{0.1cm}\,{\rm{d} }t} ,$$
 
wird bei der Berechnung der Energie-AKF auf die Division durch die Messdauer&nbsp; $T_{\rm M}$&nbsp; sowie auf den Grenzübergang&nbsp; $T_{\rm M} → ∞$&nbsp; verzichtet.}}  
 
wird bei der Berechnung der Energie-AKF auf die Division durch die Messdauer&nbsp; $T_{\rm M}$&nbsp; sowie auf den Grenzübergang&nbsp; $T_{\rm M} → ∞$&nbsp; verzichtet.}}  
Zeile 125: Zeile 141:
  
 
{{GraueBox|TEXT=   
 
{{GraueBox|TEXT=   
$\text{Beispiel 2:}$&nbsp; Wir gehen davon aus, dass der Rechteckimpuls zwischen &nbsp;$\rm 2\hspace{0.08cm}ms$&nbsp; und &nbsp;$\rm 2.5\hspace{0.08cm}ms$&nbsp; liegt und der Detektionszeitpunkt &nbsp;$T_{\rm D} =\rm 2\hspace{0.08cm}ms$&nbsp; gewünscht wird.  
+
$\text{Beispiel 2:}$&nbsp; Wir gehen davon aus,&nbsp; dass der Rechteckimpuls zwischen &nbsp;$\rm 2\hspace{0.08cm}ms$&nbsp; und &nbsp;$\rm 2.5\hspace{0.08cm}ms$&nbsp; liegt und der Detektionszeitpunkt &nbsp;$T_{\rm D} =\rm 2\hspace{0.08cm}ms$&nbsp; gewünscht wird.  
  
 
Unter diesen Voraussetzungen gilt:  
 
Unter diesen Voraussetzungen gilt:  
*Die Matched–Filter–Impulsantwort &nbsp;$h_{\rm MF}(t)$&nbsp; muss im Bereich von &nbsp;$t_1 (= 4 - 2.5) =\rm 1.5\hspace{0.08cm}ms$&nbsp; bis&nbsp; $t_2 (= 4 - 2) =\rm 2\hspace{0.08cm}ms$&nbsp; konstant sein.  
+
#Die Matched–Filter–Impulsantwort &nbsp;$h_{\rm MF}(t)$&nbsp; muss im Bereich von &nbsp; $t_1 (= 4 - 2.5) =\rm 1.5\hspace{0.08cm}ms$ &nbsp; bis&nbsp; $t_2 (= 4 - 2) =\rm 2\hspace{0.08cm}ms$ &nbsp; konstant sein.  
*Für &nbsp;$t < t_1$&nbsp; sowie für &nbsp;$t > t_2$&nbsp; darf sie keine Anteile besitzen.  
+
#Für &nbsp;$t < t_1$&nbsp; sowie für &nbsp;$t > t_2$&nbsp; darf sie keine Anteile besitzen.  
*Der Betragsfrequenzgang &nbsp;$\vert H_{\rm MF}(f)\vert$&nbsp; ist hier&nbsp; $\rm si$–förmig.  
+
#Der Betragsfrequenzgang &nbsp;$\vert H_{\rm MF}(f)\vert$&nbsp; ist hier&nbsp; $\rm si$–förmig.  
*Die Höhe der Impulsantwort &nbsp;$h_{\rm MF}(t)$&nbsp; spielt für das S/N–Verhältnis keine Rolle, da dieses unabhängig von &nbsp;$K_{\rm MF}$&nbsp; ist.}}
+
#Die Höhe der Impulsantwort &nbsp;$h_{\rm MF}(t)$&nbsp; spielt für das S/N–Verhältnis keine Rolle,&nbsp; da dieses unabhängig von &nbsp;$K_{\rm MF}$&nbsp; ist.}}
 +
 
 +
 
 
<br clear=all>
 
<br clear=all>
  
Zeile 137: Zeile 155:
 
Alle Angaben sind ohne Berücksichtigung der Verzögerung&nbsp; $\tau_g$.
 
Alle Angaben sind ohne Berücksichtigung der Verzögerung&nbsp; $\tau_g$.
  
&nbsp; '''(1)&nbsp; Rechteckimpuls'''&nbsp; &rArr; &nbsp;  ''Rectangular Impulse''    
+
&nbsp; '''(1)&nbsp; Rechteckimpuls'''&nbsp; &rArr; &nbsp;  "rectangular pulse"    
*Der Impuls&nbsp; $g(t)$&nbsp; hat im Bereich&nbsp; $\pm \Delta t_g/2$&nbsp; die konstante Höhe&nbsp; $A_g$&nbsp; und ist außerhalb Null.
+
#Der Impuls&nbsp; $g(t)$&nbsp; hat im Bereich&nbsp; $\pm \Delta t_g/2$&nbsp; die konstante Höhe&nbsp; $A_g$&nbsp; und ist außerhalb Null.
*Die Spektralfunktion&nbsp; $G(f)=A_g\cdot \Delta t_g \cdot {\rm si}(\pi\cdot \Delta t_g \cdot f)$&nbsp;  besitzt Nullstellen in äquidistanten Abständen $1/\Delta t_g$.
+
#Die Spektralfunktion&nbsp; $G(f)=A_g\cdot \Delta t_g \cdot {\rm si}(\pi\cdot \Delta t_g \cdot f)$&nbsp;  besitzt Nullstellen in äquidistanten Abständen $1/\Delta t_g$.
*Die Impulsenergie ist&nbsp; $E_g=A_g^2\cdot \Delta t_g$.   
+
#Die Impulsenergie ist&nbsp; $E_g=A_g^2\cdot \Delta t_g$.   
  
  
&nbsp; '''(2)&nbsp; Gaußimpuls'''&nbsp; &rArr; &nbsp;  ''Gaussian  Imulse''    
+
&nbsp; '''(2)&nbsp; Gaußimpuls'''&nbsp; &rArr; &nbsp;  "Gaussian  pulse"    
*Der Impuls&nbsp; $g(t)=A_g\cdot {\rm e}^{-\pi\cdot(t/\Delta t_g)^2}$&nbsp; ist unendlich weit ausgedehnt.&nbsp; Das Maximum ist&nbsp; $g(t= 0)=A_g$.
+
#Der Impuls&nbsp; $g(t)=A_g\cdot {\rm e}^{-\pi\cdot(t/\Delta t_g)^2}$&nbsp; ist unendlich weit ausgedehnt.&nbsp; Das Maximum ist&nbsp; $g(t= 0)=A_g$.
*Je kleiner die äquivalente Zeitdauer&nbsp; $\Delta t_g$&nbsp; ist, um so breiter und niedriger ist das Spektrum &nbsp; $G(f)=A_g \cdot \Delta  t_g \cdot {\rm e}^{-\pi\hspace{0.05cm}\cdot\hspace{0.05cm}(f\hspace{0.05cm}\cdot\hspace{0.05cm} \Delta t_g)^2}$.&nbsp;  
+
#Je kleiner die äquivalente Zeitdauer&nbsp; $\Delta t_g$&nbsp; ist,&nbsp; um so breiter und niedriger ist das Spektrum &nbsp; $G(f)=A_g \cdot \Delta  t_g \cdot {\rm e}^{-\pi\hspace{0.05cm}\cdot\hspace{0.05cm}(f\hspace{0.05cm}\cdot\hspace{0.05cm} \Delta t_g)^2}$.&nbsp;  
*Die Impulsenergie ist&nbsp; $E_g=A_g^2\cdot \Delta t_g/\sqrt{2}$.
+
#Die Impulsenergie ist&nbsp; $E_g=A_g^2\cdot \Delta t_g/\sqrt{2}$.
  
  
&nbsp; '''(3)&nbsp; Exponentialimpuls'''&nbsp; &rArr; &nbsp;  ''Exponential Impulse''    
+
&nbsp; '''(3)&nbsp; Exponentialimpuls'''&nbsp; &rArr; &nbsp;  "exponential pulse"    
*Der Impuls ist für&nbsp; $t<0$&nbsp; identisch Null und für positive Zeiten unendlich weit ausgedehnt &nbsp; &rArr; &nbsp; $g(t)=A_g\cdot {\rm e}^{-t/\Delta t_g}$.  
+
#Der Impuls ist für&nbsp; $t<0$&nbsp; identisch Null und für positive Zeiten unendlich weit ausgedehnt &nbsp; &rArr; &nbsp; $g(t)=A_g\cdot {\rm e}^{-t/\Delta t_g}$.  
*$g(t)$&nbsp; ist (stark) unsymmetrisch &nbsp; &rArr; &nbsp; das Spektrum &nbsp; $G(f)=A_g \cdot \Delta  t_g/( 1 + {\rm j} \cdot 2\pi \cdot f \cdot \Delta t_g)$&nbsp; ist komplexwertig;  
+
#$g(t)$&nbsp; ist (stark) unsymmetrisch &nbsp; &rArr; &nbsp; das Spektrum &nbsp; $G(f)=A_g \cdot \Delta  t_g/( 1 + {\rm j} \cdot 2\pi \cdot f \cdot \Delta t_g)$&nbsp; ist komplexwertig;  
*Die Impulsenergie ist&nbsp; $E_g=A_g^2\cdot \Delta t_g/2$.
+
#Die Impulsenergie ist&nbsp; $E_g=A_g^2\cdot \Delta t_g/2$.
 
<br><br>
 
<br><br>
 
===Weitere Angaben zu den betrachteten Impulsantworten===
 
===Weitere Angaben zu den betrachteten Impulsantworten===
  
'''Bitte alles überprüfen!'''
+
Die verschiedenen Empfangsfilter&nbsp; $H(f)$&nbsp; werden durch ihre Impulsantworten&nbsp; $h(t)$&nbsp; beschrieben.&nbsp;  
Die verschiedenen Empfangsfilter&nbsp; $H(f)$&nbsp; werden durch ihre Impulsantworten&nbsp; $h(t)$&nbsp; beschrieben.&nbsp; Diese werden ähnlich wie die Eingangsimpulse&nbsp; $g(t)$&nbsp; durch die Impulshöhe&nbsp; $A_h$, die äquivalente Impulsdauer&nbsp;&nbsp; $\Delta t_h$&nbsp; sowie die Verzögerung&nbsp; $\tau_h$&nbsp; gegenüber dem symmetrischen Fall gekennzeichnet.&nbsp;  Die folgende Kurzbeschreibung gilt stets für &nbsp; $\tau_h= 0$.
 
  
&nbsp; '''(1)&nbsp; Spalt&ndash;Tiefpass'''&nbsp; &rArr; &nbsp; ''Rechteckförmige  Impulsantwort'' 
+
Diese werden ähnlich wie die Eingangsimpulse&nbsp; $g(t)$&nbsp; durch die Impulshöhe&nbsp; $A_h$,&nbsp; die äquivalente Impulsdauer&nbsp;&nbsp; $\Delta t_h$&nbsp; sowie die Verzögerung&nbsp; $\tau_h$&nbsp; gegenüber dem symmetrischen Fall gekennzeichnet.&nbsp;  Die folgenden Kurzbeschreibungen gelten stets für &nbsp; $\tau_h= 0$.
*Die Impulsantwort&nbsp; $h(t)$&nbsp; hat im Bereich&nbsp; $\pm \Delta t_h/2$&nbsp; die konstante Höhe&nbsp; $A_h$&nbsp; und ist außerhalb Null.
 
*Der Frequenzgang&nbsp; $H(f)=K \cdot {\rm si}(\pi\cdot \Delta t_g \cdot f)$&nbsp;  besitzt Nullstellen in äquidistanten Abständen $1/\Delta t_h$.
 
*Bei Weißem Rauschen ist die Rauschvarianz am Filterausgang:&nbsp; $\sigma_d^2= N_0/2 \cdot A_h^2 \cdot  \Delta t_h$.  
 
  
 +
&nbsp; '''(1)&nbsp; Spalt&ndash;Tiefpass'''&nbsp; &rArr; &nbsp;  "rechteckförmige  Impulsantwort" 
 +
#Die Impulsantwort&nbsp; $h(t)$&nbsp; hat im Bereich&nbsp; $\pm \Delta t_h/2$&nbsp; die konstante Höhe&nbsp; $A_h$&nbsp; und ist außerhalb Null.
 +
#Der Frequenzgang&nbsp; $H(f)=K \cdot {\rm si}(\pi\cdot \Delta t_g \cdot f)$&nbsp;  besitzt Nullstellen in äquidistanten Abständen&nbsp; $1/\Delta t_h$.
 +
#Bei Weißem Rauschen ist die Rauschvarianz am Filterausgang:&nbsp; $\sigma_d^2= N_0/2 \cdot A_h^2 \cdot  \Delta t_h$. 
  
&nbsp; '''(2)&nbsp; Gauß&ndash;Tiefpass'''&nbsp; &rArr; &nbsp;  ''Gaußsche  Impulsantwort'' 
 
*Die Impulsantwort&nbsp; $h(t)=A_h\cdot {\rm e}^{-\pi\cdot(t/\Delta t_h)^2}$&nbsp; ist unendlich weit ausgedehnt.&nbsp; Das Maximum ist&nbsp; $h(t= 0)=A_h$.
 
*Je kleiner die äquivalente Zeitdauer&nbsp; $\Delta t_h$&nbsp; ist, um so breiter und niedriger ist der Frequenzgang&nbsp; $H(f)=K \cdot {\rm e}^{-\pi\hspace{0.05cm}\cdot\hspace{0.05cm}(f\hspace{0.05cm}\cdot\hspace{0.05cm} \Delta t_h)^2}$.&nbsp;
 
*Bei Weißem Rauschen ist die Rauschvarianz am Filterausgang:&nbsp; $\sigma_d^2= N_0/2 \cdot A_h^2 \cdot  \Delta t_h/\sqrt{2}$.
 
  
 +
&nbsp; '''(2)&nbsp; Gauß&ndash;Tiefpass'''&nbsp; &rArr; &nbsp;  "Gaußsche  Impulsantwort" 
 +
#Die Impulsantwort&nbsp; $h(t)=A_h\cdot {\rm e}^{-\pi\cdot(t/\Delta t_h)^2}$&nbsp; ist unendlich weit ausgedehnt.&nbsp; Das Maximum ist&nbsp; $h(t= 0)=A_h$.
 +
#Je kleiner die äquivalente Zeitdauer&nbsp; $\Delta t_h$&nbsp; ist,&nbsp; um so breiter und niedriger ist der Frequenzgang&nbsp; $H(f)=K \cdot {\rm e}^{-\pi\hspace{0.05cm}\cdot\hspace{0.05cm}(f\hspace{0.05cm}\cdot\hspace{0.05cm} \Delta t_h)^2}$.&nbsp;
 +
#Bei Weißem Rauschen ist die Rauschvarianz am Filterausgang:&nbsp; $\sigma_d^2= N_0/2 \cdot A_h^2 \cdot  \Delta t_h/\sqrt{2}$.
  
&nbsp; '''(3)&nbsp; Tiefpass 1. Ordnung'''&nbsp; &rArr; &nbsp;  ''Exponentiell abfallende  Impulsantwort'' 
 
*Die Impulsantwort ist für&nbsp; $t<0$&nbsp; identisch Null und für positive Zeiten unendlich weit ausgedehnt &nbsp; &rArr; &nbsp; $h(t)=A_h\cdot {\rm e}^{-t/\Delta t_h}$.
 
*$h(t)$&nbsp; ist kausal und (stark) unsymmetrisch.&nbsp; Der Frequenzgang $H(f)=A_g \cdot \Delta  t_g/( 1 + {\rm j} \cdot 2\pi \cdot f \cdot \Delta t_g)$&nbsp; ist komplexwertig.
 
*Bei Weißem Rauschen ist die Rauschvarianz am Filterausgang:&nbsp; $\sigma_d^2= N_0/4 \cdot A_h^2 \cdot  \Delta t_h$.
 
  
 +
&nbsp; '''(3)&nbsp; Tiefpass 1. Ordnung'''&nbsp; &rArr; &nbsp;  "exponentiell abfallende  Impulsantwort" 
 +
#Die Impulsantwort ist für&nbsp; $t<0$&nbsp; identisch Null und für positive Zeiten unendlich weit ausgedehnt &nbsp; &rArr; &nbsp; $h(t)=A_h\cdot {\rm e}^{-t/\Delta t_h}$.
 +
#$h(t)$&nbsp; ist kausal und (stark) unsymmetrisch.&nbsp; Der Frequenzgang $H(f)=A_h\cdot \Delta  t_h/( 1 + {\rm j} \cdot 2\pi \cdot f \cdot \Delta t_h)$&nbsp; ist komplexwertig.
 +
#Bei Weißem Rauschen ist die Rauschvarianz am Filterausgang:&nbsp; $\sigma_d^2= N_0/4 \cdot A_h^2 \cdot  \Delta t_h$.
  
&nbsp; '''(4)&nbsp; Vollkommen akausaler Tiefpass'''&nbsp; &rArr; &nbsp;  ''Impulsantwort spiegelbildlich zu''&nbsp; '''(3)'''   
+
 
*Die Impulsantwort ist für&nbsp; $t>0$&nbsp; identisch Null und für negative Zeiten unendlich weit ausgedehnt &nbsp; &rArr; &nbsp; $h(t)=A_h\cdot {\rm e}^{t/\Delta t_h}$&nbsp; für&nbsp; $t<0$.  
+
&nbsp; '''(4)&nbsp; Extrem akausales Filter'''&nbsp; &rArr; &nbsp;  "Impulsantwort spiegelbildlich zu&nbsp; '''(3)'''"    
*Der Frequenzgang $H(f)$&nbsp; ist konjugiert komplex zum Frequenzgang des Tiefpasses 1. Ordnung.   
+
#Die Impulsantwort ist für&nbsp; $t>0$&nbsp; identisch Null und für negative Zeiten unendlich weit ausgedehnt &nbsp; &rArr; &nbsp; $h(t)=A_h\cdot {\rm e}^{t/\Delta t_h}$&nbsp; für&nbsp; $t<0$.  
*Die Rauschvarianz am Filterausgang ist bei Weißem Rauschen genau so groß wie beim Tiefpass 1. Ordnung:&nbsp; $\sigma_d^2= N_0/4 \cdot A_h^2 \cdot  \Delta t_h$.
+
#Der Frequenzgang $H(f)$&nbsp; ist konjugiert komplex zum Frequenzgang des Tiefpasses 1. Ordnung.   
 +
#Die Rauschvarianz am Filterausgang ist bei Weißem Rauschen genau so groß wie beim Tiefpass 1. Ordnung:&nbsp; $\sigma_d^2= N_0/4 \cdot A_h^2 \cdot  \Delta t_h$.
  
  
Zeile 187: Zeile 206:
 
<br>
 
<br>
 
[[Datei:Aufgaben_2D-Gauss.png|right]]
 
[[Datei:Aufgaben_2D-Gauss.png|right]]
''' Überarbeiten'''
+
 
*Wählen Sie zunächst die Nummer&nbsp; ('''1''', ... , '''10''')&nbsp; der zu bearbeitenden Aufgabe.
+
*Wählen Sie zunächst die Nummer&nbsp; $($'''1''', ... , '''11'''$)$&nbsp; der zu bearbeitenden Aufgabe.
 +
 
 
*Eine Aufgabenbeschreibung wird angezeigt. Die Parameterwerte sind angepasst.
 
*Eine Aufgabenbeschreibung wird angezeigt. Die Parameterwerte sind angepasst.
 +
 
*Lösung nach Drücken von &bdquo;Musterlösung&rdquo;.
 
*Lösung nach Drücken von &bdquo;Musterlösung&rdquo;.
*Die Nummer&nbsp; '''0'''&nbsp; entspricht einem &bdquo;Reset&rdquo;:&nbsp; Gleiche Einstellung wie beim Programmstart.
 
*Alle Signalwerte sind normiert auf&nbsp; $\pm 1$&nbsp; zu verstehen.&nbsp; Auch die ausgegebenen Leistungen sind normierte Größen. 
 
'''Alles normiert'''
 
  
'''Für (1) soll voreingestellt sein, ohne dass es in der Aufgabenstellung erwähnt wird: Spalt-TP, $A_h=0.5,\ \Delta t_h=1.6,\ \tau_h=0.8, \ T_D = 2$'''
+
*Die Nummer&nbsp; '''0'''&nbsp; entspricht einem &bdquo;Reset&rdquo;:&nbsp; Gleiche Einstellung wie zu Beginn.
 +
 
 +
*Alle Zeiten, Frequenzen, Signalwerte und Leistungen sind normiert zu verstehen.
 +
 
  
 
{{BlaueBox|TEXT=
 
{{BlaueBox|TEXT=
Zeile 208: Zeile 229:
  
 
:*&nbsp;Die eingestellten Filterparameter sind&nbsp; $A_h=A_g=1, \ \Delta t_h=\Delta t_g=1,\ \tau_h =\tau_g=0$ &nbsp; &rArr; &nbsp; $T_{\rm D} = \tau_h +\tau_g=0$ &nbsp; &rArr; &nbsp; $\rho _{\rm MF} = 200$ &nbsp; &rArr; &nbsp; $10 \cdot \lg \ \rho _{\rm MF}  \approx 23$&nbsp; dB.
 
:*&nbsp;Die eingestellten Filterparameter sind&nbsp; $A_h=A_g=1, \ \Delta t_h=\Delta t_g=1,\ \tau_h =\tau_g=0$ &nbsp; &rArr; &nbsp; $T_{\rm D} = \tau_h +\tau_g=0$ &nbsp; &rArr; &nbsp; $\rho _{\rm MF} = 200$ &nbsp; &rArr; &nbsp; $10 \cdot \lg \ \rho _{\rm MF}  \approx 23$&nbsp; dB.
:*&nbsp;Die Impulsenergie ist als das Integral über $g^2(t)$ berechenbar &nbsp; &rArr; &nbsp; $E_g = A_g^2 \cdot \Delta t_g=1$ &nbsp; &rArr; &nbsp; $\rho _{\rm MF} = 2 \cdot E_g /N_0 =200$.&nbsp; $T_{\text{D, opt}  }=0$&nbsp; ist hier implizit berücksichtigt.
+
:*&nbsp;Die Impulsenergie ist das Integral über $g^2(t)$ &nbsp; &rArr; &nbsp; $E_g = A_g^2 \cdot \Delta t_g=1$ &nbsp; &rArr; &nbsp; $\rho _{\rm MF} = 2 \cdot E_g /N_0 =200$.&nbsp; $T_{\text{D, opt}  }=0$&nbsp; ist hier implizit berücksichtigt.
 
:*&nbsp;Eine andere Gleichung lautet:&nbsp; $\rho_d (T_{\rm D}) =d_{\rm S}^2 (T_{\rm D})/\sigma_d^2$.&nbsp; Die Rauschvarianz kann z. B. als Integral über&nbsp; $h^2(t)$&nbsp; berechnet werden:&nbsp; $\sigma_d^2= N_0 \cdot \Delta t_h/2 = 0.005$.
 
:*&nbsp;Eine andere Gleichung lautet:&nbsp; $\rho_d (T_{\rm D}) =d_{\rm S}^2 (T_{\rm D})/\sigma_d^2$.&nbsp; Die Rauschvarianz kann z. B. als Integral über&nbsp; $h^2(t)$&nbsp; berechnet werden:&nbsp; $\sigma_d^2= N_0 \cdot \Delta t_h/2 = 0.005$.
 
:*&nbsp;Das Nutzsignal&nbsp; $d_{\rm S} (t)= g(t) * h(t)$&nbsp; hat einen dreieckförmigen Verlauf mit dem Maximum&nbsp; $d_{\rm S} (T_{\rm D, \ opt} = 0 )= 1$ &nbsp; &rArr; &nbsp; $\rho_d (T_{\rm D, \ opt} = 0 ) = 200= \rho _{\rm MF}$.
 
:*&nbsp;Das Nutzsignal&nbsp; $d_{\rm S} (t)= g(t) * h(t)$&nbsp; hat einen dreieckförmigen Verlauf mit dem Maximum&nbsp; $d_{\rm S} (T_{\rm D, \ opt} = 0 )= 1$ &nbsp; &rArr; &nbsp; $\rho_d (T_{\rm D, \ opt} = 0 ) = 200= \rho _{\rm MF}$.
Zeile 232: Zeile 253:
  
 
{{BlaueBox|TEXT=
 
{{BlaueBox|TEXT=
'''(7)'''&nbsp; Wir gehen weiter von der Rechteck&ndash;Rechteck&ndash;Komination aus mit&nbsp; $A_h=A_g=1,\ \Delta t_h=\Delta t_g=1,\ \tau_h=\tau_g=0,\ N_0 =0.02,\ T_{\rm D}=0$.&nbsp; <br> &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;  Interpretieren Sie die Ergebnisse nach Variation der äquivalenten Impulsdauer&nbsp; $\Delta t_h$&nbsp; von&nbsp; $h(t)$&nbsp; im Bereich&nbsp; $0.6$ ... $1.4$.&nbsp; Nutzen Sie die Grafikdarstellung über&nbsp; $\Delta t_h$. }}
+
'''(7)'''&nbsp; Wir gehen weiter von der Rechteck&ndash;Rechteck&ndash;Kombination aus mit&nbsp; $A_h=A_g=1,\ \Delta t_h=\Delta t_g=1,\ \tau_h=\tau_g=0,\ N_0 =0.02,\ T_{\rm D}=0$.&nbsp; <br> &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;  Interpretieren Sie die Ergebnisse nach Variation der äquivalenten Impulsdauer&nbsp; $\Delta t_h$&nbsp; von&nbsp; $h(t)$&nbsp; im Bereich&nbsp; $0.6$ ... $1.4$.&nbsp; Nutzen Sie die Grafikdarstellung über&nbsp; $\Delta t_h$. }}
  
 
:*&nbsp;Das Optimum ergibt sich erwartungsgemäß für die äquivalente Impulsdauer&nbsp; $\Delta t_h=\Delta t_g=1$.&nbsp; Dann ist&nbsp; $10 \cdot \lg \ \rho_d (T_{\rm D, \ opt} = 0 )  =20$ dB&nbsp; $\big(= 10 \cdot \lg \rho_{\rm MF}\big)$.  
 
:*&nbsp;Das Optimum ergibt sich erwartungsgemäß für die äquivalente Impulsdauer&nbsp; $\Delta t_h=\Delta t_g=1$.&nbsp; Dann ist&nbsp; $10 \cdot \lg \ \rho_d (T_{\rm D, \ opt} = 0 )  =20$ dB&nbsp; $\big(= 10 \cdot \lg \rho_{\rm MF}\big)$.  
Zeile 241: Zeile 262:
 
{{BlaueBox|TEXT=
 
{{BlaueBox|TEXT=
 
'''(8)'''&nbsp; Interpretieren Sie nun die Ergebnisse für verschiedene&nbsp; $\Delta t_g$&nbsp; des Eingangsimpulses&nbsp; $g(t)$&nbsp; im Bereich&nbsp; $0.6$ ... $1.4$.&nbsp; Nutzen Sie die Grafikdarstellung über&nbsp; $\Delta t_g$. }}
 
'''(8)'''&nbsp; Interpretieren Sie nun die Ergebnisse für verschiedene&nbsp; $\Delta t_g$&nbsp; des Eingangsimpulses&nbsp; $g(t)$&nbsp; im Bereich&nbsp; $0.6$ ... $1.4$.&nbsp; Nutzen Sie die Grafikdarstellung über&nbsp; $\Delta t_g$. }}
:*&nbsp;Die Grafikdarstellung geschieht nach folgender Aufspaltung:&nbsp; $10 \cdot \lg \ \rho_d (T_{\rm D,\ opt} )$&nbsp; (blau)&nbsp;  $=20\cdot \lg \ \big [{K \cdot d_{\rm S}} (T_{\rm D,\ opt}) \big ]$&nbsp;&nbsp; (violett)&nbsp; Minus&nbsp;  $20\cdot \lg \ \big [K \cdot \sigma_d \big ]$&nbsp; (grün).
+
:*&nbsp;Beachten Sie:&nbsp; Die blaue Kurve&nbsp; $10 \cdot \lg \ \rho_d (T_{\rm D,\ opt} )$&nbsp; ist die Differenz aus&nbsp;  $20\cdot \lg \ \big [{K \cdot d_{\rm S}} (T_{\rm D,\ opt}) \big ]$&nbsp;&nbsp; (violette Kurve)&nbsp; und&nbsp;  $20\cdot \lg \ \big [K \cdot \sigma_d \big ]$&nbsp; (grüne Kurve).
 
:*&nbsp;Beim betrachteten Parametersatz und&nbsp; $K=10$&nbsp; ist der grüne Term&nbsp;  $20\cdot \lg \ \big [K \cdot \sigma_d \big ] = 0$&nbsp;dB&nbsp; für alle&nbsp; $\Delta t_g$ &nbsp; &rArr; &nbsp; die blaue und die violette Kurve sind identisch.
 
:*&nbsp;Beim betrachteten Parametersatz und&nbsp; $K=10$&nbsp; ist der grüne Term&nbsp;  $20\cdot \lg \ \big [K \cdot \sigma_d \big ] = 0$&nbsp;dB&nbsp; für alle&nbsp; $\Delta t_g$ &nbsp; &rArr; &nbsp; die blaue und die violette Kurve sind identisch.
 
:*&nbsp;Die blaue Kurve&nbsp; $10 \cdot \lg \ \rho_d (T_{\rm D,\ opt} )$&nbsp; steigt von&nbsp; $15.6$&nbsp; dB&nbsp; $($für&nbsp; $\Delta t_g = 0.6)$&nbsp; bis&nbsp; $20$&nbsp; dB&nbsp; $($für&nbsp; $\Delta t_g = 1)$&nbsp; kontinuierlich an und bleibt für&nbsp; $\Delta t_g > 1$&nbsp; dann konstant.
 
:*&nbsp;Die blaue Kurve&nbsp; $10 \cdot \lg \ \rho_d (T_{\rm D,\ opt} )$&nbsp; steigt von&nbsp; $15.6$&nbsp; dB&nbsp; $($für&nbsp; $\Delta t_g = 0.6)$&nbsp; bis&nbsp; $20$&nbsp; dB&nbsp; $($für&nbsp; $\Delta t_g = 1)$&nbsp; kontinuierlich an und bleibt für&nbsp; $\Delta t_g > 1$&nbsp; dann konstant.
Zeile 247: Zeile 268:
 
:*&nbsp;Die Grafikdarstellung über&nbsp; $\Delta t_h$&nbsp; mit der Grundeinstellung&nbsp; $\Delta t_g = 1.4,\ \Delta t_h = 1$&nbsp; zeigt nun einen monotonen Anstieg der blauen Kurve &nbsp; $10 \cdot \lg \ \rho_d (T_{\rm D,\ opt} )$.
 
:*&nbsp;Die Grafikdarstellung über&nbsp; $\Delta t_h$&nbsp; mit der Grundeinstellung&nbsp; $\Delta t_g = 1.4,\ \Delta t_h = 1$&nbsp; zeigt nun einen monotonen Anstieg der blauen Kurve &nbsp; $10 \cdot \lg \ \rho_d (T_{\rm D,\ opt} )$.
 
:*&nbsp;Für&nbsp; $\Delta t_h = 0.6$&nbsp; ergibt sich&nbsp; $10 \cdot \lg \ \rho_d (T_{\rm D,\ opt} )\approx 17.8$ dB,&nbsp;für&nbsp; $\Delta t_h = 1.4$&nbsp; dagegen&nbsp; $10 \cdot \lg \ \rho_d (T_{\rm D,\ opt} )\approx 21.5$ dB&nbsp; $=10 \cdot \lg \ \rho_{\rm MF}$.
 
:*&nbsp;Für&nbsp; $\Delta t_h = 0.6$&nbsp; ergibt sich&nbsp; $10 \cdot \lg \ \rho_d (T_{\rm D,\ opt} )\approx 17.8$ dB,&nbsp;für&nbsp; $\Delta t_h = 1.4$&nbsp; dagegen&nbsp; $10 \cdot \lg \ \rho_d (T_{\rm D,\ opt} )\approx 21.5$ dB&nbsp; $=10 \cdot \lg \ \rho_{\rm MF}$.
 
===Dummy===
 
  
 
{{BlaueBox|TEXT=
 
{{BlaueBox|TEXT=
Zeile 254: Zeile 273:
 
:*&nbsp;Hier gilt&nbsp; $h(t)=g(t)$.&nbsp; Bei einer Matched-Filter-Konfiguration müsste&nbsp; $h(t)={\rm const.} \cdot g(T_{\rm D}-t)$&nbsp; gelten.
 
:*&nbsp;Hier gilt&nbsp; $h(t)=g(t)$.&nbsp; Bei einer Matched-Filter-Konfiguration müsste&nbsp; $h(t)={\rm const.} \cdot g(T_{\rm D}-t)$&nbsp; gelten.
 
:*&nbsp;Das Detektionsnutzsignal&nbsp; $d_{\rm S}(t)$&nbsp; hat keinen symmetrischen Verlauf um das Maximum.&nbsp;Beim Matched-Filter müsste&nbsp; $d_{\rm S}(T_{\rm D}-t) = d_{\rm S}(T_{\rm D}+t) $&nbsp; gelten.     
 
:*&nbsp;Das Detektionsnutzsignal&nbsp; $d_{\rm S}(t)$&nbsp; hat keinen symmetrischen Verlauf um das Maximum.&nbsp;Beim Matched-Filter müsste&nbsp; $d_{\rm S}(T_{\rm D}-t) = d_{\rm S}(T_{\rm D}+t) $&nbsp; gelten.     
:*&nbsp;Trotz&nbsp; $\Delta t_h=\Delta t_g$&nbsp; ist&nbsp; $10 \cdot \lg \ \rho_d (T_{\rm D,\ opt}) \approx 14.3$ dB &nbsp; ist kleiner als&nbsp; $10 \cdot \lg \ \rho _{\rm MF} = 10 \cdot \lg \ 2 \cdot E_g/N_0 \approx 17$ dB.
+
:*&nbsp;Trotz&nbsp; $\Delta t_h=\Delta t_g$&nbsp; ist&nbsp; $10 \cdot \lg \ \rho_d (T_{\rm D,\ opt}) \approx 14.3$ dB &nbsp; kleiner als&nbsp; $10 \cdot \lg \ \rho _{\rm MF} = 10 \cdot \lg \ 2 \cdot E_g/N_0 \approx 17$ dB.
  
 
{{BlaueBox|TEXT=
 
{{BlaueBox|TEXT=
'''(10)'''&nbsp; Was ändert sich, wenn Sie bei sonst gleichen Einstellungen mit dem &bdquo;extrem akausalen Tiefpass&rdquo;?&nbsp; Erfüllt diese Einstellung den Matched-Filter-Kriterien?&nbsp; Begründung. }}   
+
'''(10)'''&nbsp; Was ändert sich bei sonst gleichen Einstellungen mit dem &bdquo;extrem akausalen Filter&rdquo;?&nbsp; Erfüllt die Einstellung die Matched-Filter-Kriterien?&nbsp; Begründung. }}   
 
:*&nbsp;Hier gilt nun&nbsp; $h(t)=g(-t)$&nbsp; und das Detektionsnutzsignal&nbsp; $d_{\rm S}(t)$&nbsp; ist symmetrisch um $t=0$.&nbsp; Sinnvollerweise sollte hier&nbsp; $T_{\rm D} = 0 $&nbsp; gewählt werden.     
 
:*&nbsp;Hier gilt nun&nbsp; $h(t)=g(-t)$&nbsp; und das Detektionsnutzsignal&nbsp; $d_{\rm S}(t)$&nbsp; ist symmetrisch um $t=0$.&nbsp; Sinnvollerweise sollte hier&nbsp; $T_{\rm D} = 0 $&nbsp; gewählt werden.     
 
:*&nbsp;Damit erhält man für&nbsp; $10 \cdot \lg \ \rho_d (T_{\rm D,\ opt}) =10 \cdot \lg \ d_{\rm S}^2 (T_{\rm D,\ opt})/\sigma_d^2 = 17$ dB &nbsp; den gleichen Wert wie für&nbsp; $10 \cdot \lg \ \rho _{\rm MF} = 10 \cdot \lg \ 2 \cdot E_g/N_0 = 17$ dB.
 
:*&nbsp;Damit erhält man für&nbsp; $10 \cdot \lg \ \rho_d (T_{\rm D,\ opt}) =10 \cdot \lg \ d_{\rm S}^2 (T_{\rm D,\ opt})/\sigma_d^2 = 17$ dB &nbsp; den gleichen Wert wie für&nbsp; $10 \cdot \lg \ \rho _{\rm MF} = 10 \cdot \lg \ 2 \cdot E_g/N_0 = 17$ dB.
:*&nbsp;Das Detektionsnutzsignal&nbsp; $d_{\rm S}(t)$&nbsp; ist formgleich mit der Energie&ndash;AKF des Sendeimulses&nbsp; $g(t)$.&nbsp; Das Matched-Filter bündelt die Energie um den geeigneten Zeitpunkt&nbsp; $T_{\rm D,\ opt}$.
+
:*&nbsp;Das Nutzsignal&nbsp; $d_{\rm S}(t)$&nbsp; ist formgleich mit der Energie&ndash;AKF des Sendeimulses&nbsp; $g(t)$.&nbsp; Das Matched-Filter bündelt die Energie um den geeigneten Zeitpunkt&nbsp; $T_{\rm D,\ opt}$.
 +
 
 +
{{BlaueBox|TEXT=
 +
'''(11)'''&nbsp; Mit welchem Rechteckimpuls&nbsp; $g(t)$&nbsp; erreicht man mit dem entsprechend angepassten Filter das gleiche&nbsp; $\rho _{\rm MF}=50$&nbsp; wie in Aufgabe&nbsp; '''(10)'''?&nbsp;  <br> &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;  Mit  &nbsp;$A_h=A_g=1,\ \Delta t_h=\Delta t_g=0.5$&nbsp; oder mit&nbsp;$A_h=A_g=0.5,\ \Delta t_h=\Delta t_g=1$&nbsp;? }}
 +
:*&nbsp;Aus der Gleichung&nbsp; $\rho _{\rm MF} = 2 \cdot E_g/N_0$&nbsp; geht bereits hervor, dass das SNR nur von der Energie&nbsp; $E_g$&nbsp; des Eingangsimpulses abhängt und nicht von dessen Form.
 +
:*&nbsp;Der Exponentialimpuls mit&nbsp; $A_g=1,\ \Delta t_g=1$&nbsp; hat die Energie&nbsp; $E_g=0.5$.&nbsp; Der Rechteckimpuls mit&nbsp; $A_g=1,\ \Delta t_g=0.5$&nbsp; ebenfalls &nbsp; &rArr; &nbsp; $\rho _{\rm MF}=50$.
 +
:*&nbsp;Dagegen besitzt der Rechteckimpuls mit&nbsp; $A_g=0.5,\ \Delta t_g=1$&nbsp; eine kleinere Energie &nbsp; &rArr; &nbsp; $E_g=0.25$ &nbsp; &rArr; &nbsp; $\rho _{\rm MF}=25$ &nbsp; &rArr; &nbsp; $10 \cdot \lg \ \rho _{\rm MF} = 14$ dB. 
  
 
==Zur Handhabung des Applets==
 
==Zur Handhabung des Applets==
 
<br>
 
<br>
[[Datei:Anleitung_abtast.png|right|600px]]
+
[[Datei:600px-Anleitung Matched Filter.png|right|600px|frame|Bildschirmabzug der englischen Version]]
<br><br><br><br>
+
 
&nbsp; &nbsp; '''(A)''' &nbsp; &nbsp; Auswahl eines von vier Quellensignalen  
+
&nbsp; &nbsp; '''(A)''' &nbsp; &nbsp; Auswahl des Eingangsimpulses&nbsp; $g(t)$:<br> &nbsp; &nbsp;  &nbsp;  &nbsp;  &nbsp;  &nbsp;  &nbsp;  &nbsp;  &nbsp;  Rechteck | Gauß |  Exponential
 +
 
 +
&nbsp; &nbsp; '''(B)''' &nbsp; Parameterwahl des Eingangsimpulses:<br> &nbsp; &nbsp;  &nbsp;  &nbsp;  &nbsp;  &nbsp;  &nbsp;  &nbsp;  &nbsp;  Amplitude&nbsp; $A_g$, &nbsp; &nbsp; äquivalente Impulsdauer&nbsp; $\Delta t_g$,<br> &nbsp; &nbsp;  &nbsp;  &nbsp;  &nbsp;  &nbsp;  &nbsp;  &nbsp;  &nbsp;  Verschiebung&nbsp; $\tau_g$
 +
 
 +
&nbsp; &nbsp; '''(C)''' &nbsp; &nbsp; Auswahl der Empfangsfilter&ndash;Impulsantwort&nbsp; $h(t)$:<br> &nbsp; &nbsp; &nbsp;  &nbsp;  &nbsp;  &nbsp;  &nbsp;  &nbsp;  &nbsp;  Spalt-TP | Gauß-TP | Tiefpass 1. Ordnung | extrem akausal 
  
&nbsp; &nbsp; '''(B)''' &nbsp; &nbsp; Parameterwahl für Quellensignal&nbsp; $1$&nbsp; (Amplitude, Frequenz, Phase)
+
&nbsp; &nbsp; '''(D)''' &nbsp; &nbsp; Parameterwahl der Impulsantwort:<br> &nbsp; &nbsp;  &nbsp;  &nbsp;  &nbsp;  &nbsp;  &nbsp;  &nbsp;  &nbsp;  Amplitude&nbsp; $A_h$, &nbsp; &nbsp; äquivalente Impulsdauer&nbsp; $\Delta t_h$,<br> &nbsp; &nbsp;  &nbsp;  &nbsp;  &nbsp;  &nbsp;  &nbsp;  &nbsp;  &nbsp;  Verschiebung&nbsp; $\tau_h$, &nbsp; &nbsp;  Detektionszeitpunkt&nbsp; $T_{\rm D}$
  
&nbsp; &nbsp; '''(C)''' &nbsp; &nbsp; Ausgabe der verwendeten Programmparameter 
+
&nbsp; &nbsp; '''(E)''' &nbsp; &nbsp; Skizzen von&nbsp; $g(t)$&nbsp; $($rot$)$&nbsp; und&nbsp; $h(t)$&nbsp; $($blau$)$
  
&nbsp; &nbsp; '''(D)''' &nbsp; &nbsp; Parameterwahl für Abtastung&nbsp; $(f_{\rm G})$&nbsp; und <br>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; Signalrekonstruktion&nbsp; $(f_{\rm A},\ r)$
+
&nbsp; &nbsp; '''(F)''' &nbsp; &nbsp; Skizze des Faltungsergebnisses&nbsp; $d_{\rm S}= g(t)\star h(t)$
  
&nbsp; &nbsp; '''(E)''' &nbsp; &nbsp; Skizze des Empfänger&ndash;Frequenzgangs&nbsp; $H_{\rm E}(f)$  
+
&nbsp; &nbsp; '''(G)''' &nbsp; &nbsp; Eingabe der einseitigen Rauschleistungsdichte&nbsp; $N_0$
  
&nbsp; &nbsp; '''(F)''' &nbsp; &nbsp; Numerische Ausgabe&nbsp; $(P_x, \ P_{\rm \varepsilon}, \ 10 \cdot \lg(P_x/ P_{\rm \varepsilon})$  
+
&nbsp; &nbsp; '''(H)''' &nbsp; &nbsp; Auswahl, ob im Bereich&nbsp; '''(K)'''&nbsp; die Simulationsergebnisse<br> &nbsp; &nbsp; &nbsp;  &nbsp;  &nbsp;  &nbsp;  &nbsp;  &nbsp;  &nbsp; numerisch oder grafisch dargestellt werden sollen
  
&nbsp; &nbsp; '''(G)''' &nbsp; &nbsp; Darstellungsauswahl für Zeitbereich
+
&nbsp; &nbsp; '''( I )''' &nbsp; &nbsp; Darstellungsbereich für&nbsp; $h(t)^2$
  
&nbsp; &nbsp; '''(H)''' &nbsp; &nbsp; Grafikbereich für Zeitbereich
+
&nbsp; &nbsp; '''(J)''' &nbsp; &nbsp; Darstellungsbereich für&nbsp; $|H(f)|^2$
  
&nbsp; &nbsp; '''( I )''' &nbsp; &nbsp; Darstellungsauswahl für Frequenzbereich 
+
&nbsp; &nbsp; '''(K)''' &nbsp; &nbsp; Bereich für numerische bzw. grafische Ausgabe
  
&nbsp; &nbsp; '''(J)''' &nbsp; &nbsp; Grafikbereich für Frequenzbereich
+
&nbsp; &nbsp; '''(L)''' &nbsp; &nbsp; Bereich für Übungen:&nbsp; Aufgabenauswahl
  
&nbsp; &nbsp; '''(K)''' &nbsp; &nbsp; Bereich für Übungen:&nbsp; Aufgabenauswahl, Fragen, Musterlösung
+
&nbsp; &nbsp; '''(M)''' &nbsp; &nbsp; Bereich für Übungen:&nbsp; Fragen, Musterlösung
 
<br clear=all>
 
<br clear=all>
 +
 
==Über die Autoren==
 
==Über die Autoren==
Dieses interaktive Berechnungstool  wurde am&nbsp; [http://www.lnt.ei.tum.de/startseite Lehrstuhl für Nachrichtentechnik]&nbsp; der&nbsp; [https://www.tum.de/ Technischen Universität München]&nbsp; konzipiert und realisiert.  
+
Dieses interaktive Berechnungstool  wurde am&nbsp; [http://www.lnt.ei.tum.de/startseite &raquo;Lehrstuhl für Nachrichtentechnik&laquo;]&nbsp; der&nbsp; [https://www.tum.de/ &raquo;Technischen Universität München&laquo;]&nbsp; konzipiert und realisiert.  
*Die erste Version wurde 2006 von&nbsp; [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_Studierende#Markus_Elsberger_.28Diplomarbeit_LB_2006.29|Markus Elsberger]]&nbsp; im Rahmen seiner Diplomarbeit (LB) mit &bdquo;FlashMX&ndash;Actionscript&rdquo; erstellt (Betreuer:&nbsp; [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_Mitarbeiter_und_Dozenten#Prof._Dr.-Ing._habil._G.C3.BCnter_S.C3.B6der_.28am_LNT_seit_1974.29|Günter Söder]]).  
+
*Die erste Version wurde 2006 von&nbsp; [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_Studierende#Markus_Elsberger_.28Diplomarbeit_LB_2006.29|&raquo;Markus Elsberger&laquo;]]&nbsp; im Rahmen seiner Diplomarbeit&nbsp; $($LB$)$ mit&nbsp; &raquo;FlashMX&ndash;Actionscript&laquo;&nbsp; erstellt&nbsp; $($Betreuer:&nbsp; [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_Mitarbeiter_und_Dozenten#Prof._Dr.-Ing._habil._G.C3.BCnter_S.C3.B6der_.28am_LNT_seit_1974.29|Günter Söder]]$)$.
* 2020 wurde das Programm  von&nbsp; [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_Studierende#Carolin_Mirschina_.28Ingenieurspraxis_Math_2019.2C_danach_Werkstudentin.29|Carolin Mirschina]]&nbsp; im Rahmen einer Werkstudententätigkeit auf  &bdquo;HTML5&rdquo; umgesetzt und neu gestaltet (Betreuer:&nbsp; [[Biografien_und_Bibliografien/Beteiligte_der_Professur_Leitungsgebundene_%C3%9Cbertragungstechnik#Tasn.C3.A1d_Kernetzky.2C_M.Sc._.28bei_L.C3.9CT_seit_2014.29|Tasnád Kernetzky]]).
+
 +
* 2020 wurde das Programm  von&nbsp; [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_Studierende#Carolin_Mirschina_.28Ingenieurspraxis_Math_2019.2C_danach_Werkstudentin.29|&raquo;Carolin Mirschina&laquo;]]&nbsp; im Rahmen einer Werkstudententätigkeit auf  &raquo;HTML5&laquo; umgesetzt und neu gestaltet&nbsp; $($Betreuer:&nbsp; [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_LÜT-Angehörige#Dr.-Ing._Tasn.C3.A1d_Kernetzky_.28bei_L.C3.9CT_von_2014-2022.29|&raquo;Tasnád Kernetzky&raquo;]]).
  
  
Die Umsetzung dieses Applets auf HTML 5 wurde durch die&nbsp; [https://www.lehren.tum.de/themen/ideenwettbewerb/ Exzellenzinitiative]&nbsp; der TU München finanziell unterstützt. Wir bedanken uns.
+
Die Umsetzung dieses Applets auf HTML 5 wurde durch die&nbsp; [https://www.tum.de/ueber-die-tum/exzellenzuniversitaet &raquo;Exzellenzinitiative&laquo;]&nbsp; der TU München finanziell unterstützt. Wir bedanken uns.
  
  
Zeile 302: Zeile 333:
 
==Nochmalige Aufrufmöglichkeit des Applets in neuem Fenster==
 
==Nochmalige Aufrufmöglichkeit des Applets in neuem Fenster==
  
{{LntAppletLink|abtastung}}
+
{{LntAppletLinkDeEn|matchedFilter|matchedFilter_en}}

Aktuelle Version vom 26. Oktober 2023, 10:47 Uhr

Applet in neuem Tab öffnen   Open English Version


Programmbeschreibung


Das Applet soll die Eigenschaften des so genannten „Matched-Filters”  $({\rm MF})$  verdeutlichen.  Dieses dient zur optimalen Bestimmung  $($Detektion$)$  der Amplitude und/oder der Lage einer bekannten Signalform in einer stark verrauschten Umgebung.   Oder allgemeiner gesprochen:   Das Matched-Filter – manchmal auch als „Optimalfilter”  oder als „Korrelationsfilter”  bezeichnet – dient dem Nachweis der Signalexistenz. 

Blockschaltbild des Matched-Filter-Empfängers

Die Grafik zeigt den so genannten  »Matched-Filter-Empfänger«:

  • Dieser kann mit größtmöglicher Sicherheit – anders ausgedrückt:   mit maximalem Signal–zu–Rausch–Verhältnis  $($englisch:  signal–to–noise–ratio,  $\rm SNR)$  – entscheiden, ob ein durch additives Rauschen  $n(t)$  gestörtes impulsförmiges Nutzsignal  $g(t)$  vorhanden ist oder nicht.
  • Eine Anwendung ist die Radartechnik, bei der man zwar die Impulsform  $g(t)$  kennt,  nicht aber,  wann der Impuls gesendet wurde und mit welcher Stärke und Verzögerung dieser ankommt.
  • Das Matched-Filter wird aber auch als Empfangsfilter in digitalen Systemen eingesetzt,  um die Fehlerwahrscheinlichkeit des Systems zu minimieren.


Alle Parameter,  Zeiten und Frequenzen sind als normierte Größen zu verstehen und damit dimensionslos.

  • Für den  »Eingangsimpuls«  $g(t)$  sind  „Rechteck”,  „Gauß”  und  „Exponential”  einstellbar,  die jeweils durch die Impulsamplitude  $A_g$,  die äquivalente Impulsdauer  $\Delta t_g$  sowie die Verschiebung  $\tau_g$  gegenüber dem  $($hinsichtlich Zeit$)$ symmetrischen Fall beschrieben werden.  Weitere Informationen im Abschnitt  »Weitere Angaben zu den betrachteten Eingangsimpulsen«.
  • Für das  »Empfangsfilter«  kann zwischen den Alternativen  „Spalt–Tiefpass”,  „Gauß–Tiefpass”,  „Tiefpass erster Ordnung”und  „extrem akausales Filter”  gewählt werden.  Dargestellt werden die jeweiligen Impulsantworten  $h(t)$,  gekennzeichnet durch deren Höhe  $A_h$,  die äquivalente Dauer  $\Delta t_h$  und die Verschiebung  $\tau_h$.  Weitere Informationen im Abschnitt  Weitere Angaben zu den betrachteten Impulsantworten.
  • Weitere Eingabeparameter sind der Detektionszeitpunkt  $T_{\rm D}$  sowie die ebenfalls normierte Rauschleistungsdichte  $N_0$  am Empfängereingang.


Als Numerikwerte ausgegeben werden

  1. die Energie  $E_g$  des Eingangsimpulses  $g(t)$,  der Nutzabtastwert  $d_{\rm S} (T_{\rm D})$  am Filterausgang sowie die Rauschvarianz  $\sigma_d^2$  am Filterausgang,
  2. das Signal–zu–Rausch–Verhältnis  $\rm (SNR)$  $\rho_{d} (T_{\rm D})$  am Filterausgang und die zugehörige dB–Angabe  $10 \cdot \lg \ \rho_{d} (T_{\rm D})$,
  3. der hierfür maximale Wert  $10 \cdot \lg \ \rho_{\rm MF}$. 


Erfüllt die eingegebene Konfiguration die Matched-Filter-Bedingungen,  dann gilt:   $$10 \cdot \lg \ \rho_{d} (T_{\rm D,\ opt}) = 10 \cdot \lg \ \rho_{\rm MF}.$$


Theoretischer Hintergrund


Detailbeschreibung des zugrunde liegenden Modells

Für die einzelnen Komponenten gelten folgende Voraussetzungen:

  • Der Nutzanteil  $g(t)$  des Empfangssignals  $r(t)=g(t)+n(t)$  sei impulsförmig und somit  "energiebegrenzt".
  • Das heißt:   Das Integral über  $\big [g(t)\big ]^2$  von  $–∞$  bis  $+∞$  liefert den endlichen Wert  $E_g$.
  • Das Störsignal  $n(t)$  sei  "Weißes Gaußsches Rauschen"  mit der  (einseitigen)  Rauschleistungsdichte  $N_0$.
  • Das Filterausgangssignal  $d(t)$  setzt sich aus zwei Anteilen zusammen.  Der Anteil  $d_{\rm S}(t)$  geht auf das  "$\rm S$"ignal  $g(t)$  zurück, der Anteil  $d_{\rm N}(t)$  auf das  "$\rm N$"oise  $n(t)$.
  • Der Empfänger,  bestehend aus einem linearen Filter   ⇒   Frequenzgang  $H_{\rm MF}(f)$  und dem Entscheider,  ist so zu dimensionieren,  dass das momentane S/N-Verhältnis am Ausgang maximal wird:
$$\rho _d ( {T_{\rm D} } ) = \frac{ {d_{\rm S} ^2 ( {T_{\rm D} } )} }{ {\sigma _d ^2 } }\mathop = \limits^{\rm{!} }\hspace{0.1cm} {\rm{Maximum} }.$$
  • Hierbei bezeichnen  $σ_d^2$  die  Varianz  $($"Leistung"$)$  des Störanteils  $d_{\rm N}(t)$  und  $T_{\rm D}$  den  $($geeignet gewählten$)$  "Detektionszeitpunkt".


Matched-Filter-Optimierung

Gegeben sei ein energiebegrenztes Nutzsignal  $g(t)$  mit dem zugehörigen Spektrum  $G(f)$.

  • Damit kann das Filterausgangssignal zum Detektionszeitpunkt  $T_{\rm D}$  für jedes beliebige Filter mit der Impulsantwort  $h(t)$  und dem Frequenzgang  $H(f) =\mathcal{ F}\{h(t)\}$ wie folgt geschrieben werden  $($ohne Berücksichtigung des Rauschens   ⇒   Index  $\rm S$  für „Signal”$)$:
$$d_{\rm S} ( {T_{\rm D} } ) = g(t) * h(t) = \int_{ - \infty }^{ + \infty } {G(f) \cdot H(f) \cdot {\rm{e}}^{ {\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 2\pi \hspace{0.05cm}\cdot \hspace{0.05cm}f \hspace{0.05cm}\cdot \hspace{0.05cm}T_{\rm D} }\hspace{0.1cm} {\rm{d}}f} .$$
  • Der  „Rauschanteil”  $d_{\rm N}(t)$  des Filterausgangssignals  $($Index  $\rm N$  für „Noise”$)$  rührt allein vom Weißen Rauschen  $n(t)$  am Eingang des Empfängers her.  Für seine Varianz gilt unabhängig vom Detektionszeitpunkt  $T_{\rm D}$:
$$\sigma _d ^2 = \frac{ {N_0 } }{2} \cdot \int_{ - \infty }^{ + \infty } {\left| {H(f)} \right|^{\rm{2} }\hspace{0.1cm} {\rm{d} }f} .$$
  • Damit lautet das hier vorliegende Optimierungsproblem:
$$\rho _d ( {T_{\rm D} } ) = \frac{ {\left| {\int_{ - \infty }^{ + \infty } {G(f) \cdot H(f) \cdot {\rm{e} }^{ {\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 2\pi \hspace{0.05cm}\cdot \hspace{0.05cm}f \hspace{0.05cm}\cdot \hspace{0.05cm}T_{\rm D} }\hspace{0.1cm} {\rm{d} }f} } \right|^2 } }{ {N_0 /2 \cdot \int_{ - \infty }^{ + \infty } {\left| {H(f)} \right|^{\rm{2} }\hspace{0.1cm} {\rm{d} }f} } } \stackrel{!}{=} {\rm{Maximum} }.$$

$\text{Hier zunächst ohne Beweis:}$    Man kann zeigen,  dass dieser Quotient für den folgenden Frequenzgang  $H(f)$  am größten wird:

$$H(f) = H_{\rm MF} (f) = K_{\rm MF} \cdot G^{\star} (f) \cdot {\rm e}^{- {\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 2\pi \hspace{0.05cm}\cdot \hspace{0.05cm}f \hspace{0.05cm}\cdot \hspace{0.05cm}T_{\rm D} } . $$
  • Damit erhält man für das Signal–zu–Rauschleistungsverhältnis am Matched–Filter–Ausgang  $($unabhängig von der dimensionsbehafteten Konstante  $K_{\rm MF})$:
$$\rho _d ( {T_{\rm D} } ) = { {2 \cdot E_g } }/{ {N_0 } }.$$
  • $E_g$  bezeichnet die Energie des Eingangsimpulses,  die man nach dem  »Satz von Parseval«  sowohl im Zeit– als auch im Frequenzbereich berechnen kann:
$$E_g = \int_{ - \infty }^{ + \infty } {g^2 (t)\hspace{0.1cm}{\rm{d} }t} = \int_{ - \infty }^{ + \infty } {\left \vert {G(f)} \right\vert ^{\rm{2} }\hspace{0.1cm} {\rm d}f} .$$


$\text{Beispiel 1:}$   Ein rechteckförmiger Impuls  $g(t)$  mit Amplitude  $\rm 1\hspace{0.05cm}V$,  Dauer  $0.5\hspace{0.05cm} \rm ms$  und unbekannter Lage soll in einer verrauschten Umgebung aufgefunden werden.

  • Somit ist die Impulsenergie  $E_g = \rm 5 · 10^{–4} \hspace{0.05cm}V^2s$.
  • Die Rauschleistungsdichte sei  $N_0 = \rm 10^{–6} \hspace{0.05cm}V^2/Hz$.


Das beste Ergebnis   ⇒   das   »maximale S/N–Verhältnis«   erzielt man mit dem Matched-Filter:

$$\rho _d ( {T_{\rm D} } ) = \frac{ {2 \cdot E_g } }{ {N_0 } } = \frac{ {2 \cdot 5 \cdot 10^{-4}\, {\rm V^2\,s} } }{ {10^{-6}\, {\rm V^2/Hz} } } = 1000 \hspace{0.3cm}\Rightarrow\hspace{0.3cm} 10 \cdot {\rm lg}\hspace{0.15cm}\rho _d ( {T_{\rm D} } ) = 30\,{\rm dB}.$$


Dieses Matched–Filter–Kriterium wird nun schrittweise hergeleitet.  Wenn Sie daran nicht interessiert sind,  dann springen Sie zur Seite  »Interpretation des Matched–Filters«.

$\text{Herleitung des Matched–Filter–Kriteriums:}$ 

$(1)$  Die Schwarzsche Ungleichung lautet mit den beiden (im allgemeinen komplexen) Funktionen  $A(f)$  und  $B(f)$:

$$\left \vert {\int_a^b {A(f) \cdot B(f)\hspace{0.1cm}{\rm{d} }f} } \right \vert ^2 \le \int_a^b {\left \vert {A(f)} \right \vert^{\rm{2} } \hspace{0.1cm}{\rm{d} }f} \cdot \int_a^b {\left\vert {B(f)} \right \vert^{\rm{2} } \hspace{0.1cm}{\rm{d} }f} .$$

$(2)$  Wir wenden nun diese Gleichung auf das Signal–zu–Rauschverhältnis an:

$$\rho _d ( {T_{\rm D} } ) = \frac{ {\left \vert {\int_{ - \infty }^{ + \infty } {G(f) \cdot H(f) \cdot {\rm{e} }^{ {\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 2\pi \hspace{0.05cm}\cdot \hspace{0.05cm}f \hspace{0.05cm}\cdot \hspace{0.05cm}T_{\rm D} } \hspace{0.1cm}{\rm{d} }f} } \right \vert^2 } }{ {N_0 /2 \cdot \int_{ - \infty }^{ + \infty } {\left \vert {H(f)} \right \vert^{\rm{2} }\hspace{0.1cm} {\rm{d} }f} } }.$$

$(3)$  Mit  $A(f) = G(f)$  und  $B(f) = H(f) · {\rm e}^{ {\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 2\pi \hspace{0.05cm}\cdot \hspace{0.05cm}f \hspace{0.05cm}\cdot \hspace{0.05cm}T_{\rm D} }$  ergibt sich somit die folgende Schranke:

$$\rho_d ( {T_{\rm D} } ) \le \frac{1}{ {N_0 /2} } \cdot \int_{ - \infty }^{ + \infty } {\left \vert {G(f)} \right \vert^{\rm{2} } }\hspace{0.1cm}{\rm{d} }f .$$

$(4)$  Wir setzen für den Filterfrequenzgang nun versuchsweise ein:

$$H(f) = H_{\rm MF} (f) = K_{\rm MF} \cdot G^{\star} (f) \cdot {\rm{e} }^{- {\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 2\pi \hspace{0.05cm}\cdot \hspace{0.05cm}f \hspace{0.05cm}\cdot \hspace{0.05cm}T_{\rm D} }.$$

$(5)$  Dann erhält man aus der obigen Gleichung  $(2)$  folgendes Ergebnis:

$$\rho _d ( {T_{\rm D} } ) = \frac{ {\left \vert K_{\rm MF}\cdot {\int_{ - \infty }^{ + \infty } {\left \vert {G(f)} \right \vert ^{\rm{2} }\hspace{0.1cm} {\rm{d} }f} } \right \vert ^2 } }{ {N_0 /2 \cdot K_{\rm MF} ^2 \cdot \int_{ - \infty }^{ + \infty } {\left \vert {G(f)} \right \vert ^{\rm{2} }\hspace{0.1cm} {\rm{d} }f} } } = \frac{1}{ {N_0 /2} } \cdot \int_{ - \infty }^{ + \infty } {\left \vert {G(f)} \right \vert ^{\rm{2} }\hspace{0.1cm} {\rm{d} }f} .$$

$\text{Das heißt:}$

  • Mit dem Ansatz  $(4)$  für das Matched–Filter  $H_{\rm MF}(f)$  wird in obiger Abschätzung tatsächlich der maximal mögliche Wert erreicht.
  • Mit keinem anderen Filter  $H(f) ≠ H_{\rm MF}(f)$  kann man ein höheres Signal–zu–Rauschleistungsverhältnis erzielen.
  • Das Matched–Filter ist in Bezug auf das ihm zugrunde gelegte Maximierungskriterium optimal.
q.e.d.


Interpretation des Matched-Filters

Auf der letzten Seite wurde der Frequenzgang des Matched-Filters wie folgt hergeleitet:

$$H_{\rm MF} (f) = K_{\rm MF} \cdot G^{\star} (f) \cdot {\rm{e} }^{- {\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} 2\pi \hspace{0.05cm}\cdot \hspace{0.05cm}f \hspace{0.05cm}\cdot \hspace{0.05cm}T_{\rm D} } .$$

Durch  »Fourierrücktransformation«  erhält man die dazugehörige Impulsantwort:

$$h_{\rm MF} (t) = K_{\rm MF} \cdot g(T_{\rm D} - t).$$

Diese beiden Funktionen lassen sich wie folgt interpretieren:

  • Das  Matched-Filter  ist durch den Term  $G^{\star}(f)$  an das Spektrum des aufzufindenden Impulses  $g(t)$  angepasst – daher sein Name  $($englisch:  "to match" ≡ anpassen$)$.
  • Die  Konstante  $K_{\rm MF}$  ist aus Dimensionsgründen notwendig.
  • Ist  $g(t)$  ein Spannungsimpuls,  so hat diese Konstante die Einheit „Hz/V”.  Der Frequenzgang ist somit dimensionslos.
  • Die  Impulsantwort  $h_{\rm MF}(t)$  ergibt sich aus dem Nutzsignal  $g(t)$  durch Spiegelung   ⇒   aus  $g(t)$  wird  $g(–t)$  $ ]$  sowie einer Verschiebung um  $T_{\rm D}$  nach rechts.
  • Der  früheste Detektionszeitpunkt  $T_{\rm D}$  folgt für realisierbare Systeme aus der Bedingung  $h_{\rm MF}(t < 0)\equiv 0$   $($Kausalität,  siehe Buch  "Lineare zeitinvariante Systeme"$)$.
  • Der  Nutzanteil  $d_{\rm S} (t)$  des Filterausgangssignals ist formgleich mit der  Energie-AKF   $\varphi^{^{\bullet} }_{g} (t )$  und gegenüber dieser um  $T_{\rm D}$  verschoben. Es gilt:
$$d_{\rm S} (t) = g(t) * h_{\rm MF} (t) = K_{\rm MF} \cdot g(t) * g(T_{\rm D} - t) = K_{\rm MF} \cdot \varphi^{^{\bullet} }_{g} (t - T_{\rm D} ).$$

$\text{Bitte beachten Sie:}$  Bei einem energiebegrenzten Signal  $g(t)$  kann man nur die  Energie–AKF  angeben:

$$\varphi^{^{\bullet} }_g (\tau ) = \int_{ - \infty }^{ + \infty } {g(t) \cdot g(t + \tau )\,{\rm{d} }t} .$$

Gegenüber der AKF-Definition eines leistungsbegrenzten Signals  $x(t)$,  nämlich

$$\varphi _x (\tau ) = \mathop {\lim }_{T_{\rm M} \to \infty } \frac{1}{ {T_{\rm M} } }\int_{ - T_{\rm M} /2}^{+T_{\rm M} /2} {x(t) \cdot x(t + \tau )\hspace{0.1cm}\,{\rm{d} }t} ,$$

wird bei der Berechnung der Energie-AKF auf die Division durch die Messdauer  $T_{\rm M}$  sowie auf den Grenzübergang  $T_{\rm M} → ∞$  verzichtet.


$\text{Beispiel 2:}$  Wir gehen davon aus,  dass der Rechteckimpuls zwischen  $\rm 2\hspace{0.08cm}ms$  und  $\rm 2.5\hspace{0.08cm}ms$  liegt und der Detektionszeitpunkt  $T_{\rm D} =\rm 2\hspace{0.08cm}ms$  gewünscht wird.

Unter diesen Voraussetzungen gilt:

  1. Die Matched–Filter–Impulsantwort  $h_{\rm MF}(t)$  muss im Bereich von   $t_1 (= 4 - 2.5) =\rm 1.5\hspace{0.08cm}ms$   bis  $t_2 (= 4 - 2) =\rm 2\hspace{0.08cm}ms$   konstant sein.
  2. Für  $t < t_1$  sowie für  $t > t_2$  darf sie keine Anteile besitzen.
  3. Der Betragsfrequenzgang  $\vert H_{\rm MF}(f)\vert$  ist hier  $\rm si$–förmig.
  4. Die Höhe der Impulsantwort  $h_{\rm MF}(t)$  spielt für das S/N–Verhältnis keine Rolle,  da dieses unabhängig von  $K_{\rm MF}$  ist.



Weitere Angaben zu den betrachteten Eingangsimpulsen

Alle Angaben sind ohne Berücksichtigung der Verzögerung  $\tau_g$.

  (1)  Rechteckimpuls  ⇒   "rectangular pulse"

  1. Der Impuls  $g(t)$  hat im Bereich  $\pm \Delta t_g/2$  die konstante Höhe  $A_g$  und ist außerhalb Null.
  2. Die Spektralfunktion  $G(f)=A_g\cdot \Delta t_g \cdot {\rm si}(\pi\cdot \Delta t_g \cdot f)$  besitzt Nullstellen in äquidistanten Abständen $1/\Delta t_g$.
  3. Die Impulsenergie ist  $E_g=A_g^2\cdot \Delta t_g$.


  (2)  Gaußimpuls  ⇒   "Gaussian pulse"

  1. Der Impuls  $g(t)=A_g\cdot {\rm e}^{-\pi\cdot(t/\Delta t_g)^2}$  ist unendlich weit ausgedehnt.  Das Maximum ist  $g(t= 0)=A_g$.
  2. Je kleiner die äquivalente Zeitdauer  $\Delta t_g$  ist,  um so breiter und niedriger ist das Spektrum   $G(f)=A_g \cdot \Delta t_g \cdot {\rm e}^{-\pi\hspace{0.05cm}\cdot\hspace{0.05cm}(f\hspace{0.05cm}\cdot\hspace{0.05cm} \Delta t_g)^2}$. 
  3. Die Impulsenergie ist  $E_g=A_g^2\cdot \Delta t_g/\sqrt{2}$.


  (3)  Exponentialimpuls  ⇒   "exponential pulse"

  1. Der Impuls ist für  $t<0$  identisch Null und für positive Zeiten unendlich weit ausgedehnt   ⇒   $g(t)=A_g\cdot {\rm e}^{-t/\Delta t_g}$.
  2. $g(t)$  ist (stark) unsymmetrisch   ⇒   das Spektrum   $G(f)=A_g \cdot \Delta t_g/( 1 + {\rm j} \cdot 2\pi \cdot f \cdot \Delta t_g)$  ist komplexwertig;
  3. Die Impulsenergie ist  $E_g=A_g^2\cdot \Delta t_g/2$.



Weitere Angaben zu den betrachteten Impulsantworten

Die verschiedenen Empfangsfilter  $H(f)$  werden durch ihre Impulsantworten  $h(t)$  beschrieben. 

Diese werden ähnlich wie die Eingangsimpulse  $g(t)$  durch die Impulshöhe  $A_h$,  die äquivalente Impulsdauer   $\Delta t_h$  sowie die Verzögerung  $\tau_h$  gegenüber dem symmetrischen Fall gekennzeichnet.  Die folgenden Kurzbeschreibungen gelten stets für   $\tau_h= 0$.

  (1)  Spalt–Tiefpass  ⇒   "rechteckförmige Impulsantwort"

  1. Die Impulsantwort  $h(t)$  hat im Bereich  $\pm \Delta t_h/2$  die konstante Höhe  $A_h$  und ist außerhalb Null.
  2. Der Frequenzgang  $H(f)=K \cdot {\rm si}(\pi\cdot \Delta t_g \cdot f)$  besitzt Nullstellen in äquidistanten Abständen  $1/\Delta t_h$.
  3. Bei Weißem Rauschen ist die Rauschvarianz am Filterausgang:  $\sigma_d^2= N_0/2 \cdot A_h^2 \cdot \Delta t_h$.


  (2)  Gauß–Tiefpass  ⇒   "Gaußsche Impulsantwort"

  1. Die Impulsantwort  $h(t)=A_h\cdot {\rm e}^{-\pi\cdot(t/\Delta t_h)^2}$  ist unendlich weit ausgedehnt.  Das Maximum ist  $h(t= 0)=A_h$.
  2. Je kleiner die äquivalente Zeitdauer  $\Delta t_h$  ist,  um so breiter und niedriger ist der Frequenzgang  $H(f)=K \cdot {\rm e}^{-\pi\hspace{0.05cm}\cdot\hspace{0.05cm}(f\hspace{0.05cm}\cdot\hspace{0.05cm} \Delta t_h)^2}$. 
  3. Bei Weißem Rauschen ist die Rauschvarianz am Filterausgang:  $\sigma_d^2= N_0/2 \cdot A_h^2 \cdot \Delta t_h/\sqrt{2}$.


  (3)  Tiefpass 1. Ordnung  ⇒   "exponentiell abfallende Impulsantwort"

  1. Die Impulsantwort ist für  $t<0$  identisch Null und für positive Zeiten unendlich weit ausgedehnt   ⇒   $h(t)=A_h\cdot {\rm e}^{-t/\Delta t_h}$.
  2. $h(t)$  ist kausal und (stark) unsymmetrisch.  Der Frequenzgang $H(f)=A_h\cdot \Delta t_h/( 1 + {\rm j} \cdot 2\pi \cdot f \cdot \Delta t_h)$  ist komplexwertig.
  3. Bei Weißem Rauschen ist die Rauschvarianz am Filterausgang:  $\sigma_d^2= N_0/4 \cdot A_h^2 \cdot \Delta t_h$.


  (4)  Extrem akausales Filter  ⇒   "Impulsantwort spiegelbildlich zu  (3)"

  1. Die Impulsantwort ist für  $t>0$  identisch Null und für negative Zeiten unendlich weit ausgedehnt   ⇒   $h(t)=A_h\cdot {\rm e}^{t/\Delta t_h}$  für  $t<0$.
  2. Der Frequenzgang $H(f)$  ist konjugiert komplex zum Frequenzgang des Tiefpasses 1. Ordnung.
  3. Die Rauschvarianz am Filterausgang ist bei Weißem Rauschen genau so groß wie beim Tiefpass 1. Ordnung:  $\sigma_d^2= N_0/4 \cdot A_h^2 \cdot \Delta t_h$.


Versuchsdurchführung


Aufgaben 2D-Gauss.png
  • Wählen Sie zunächst die Nummer  $($1, ... , 11$)$  der zu bearbeitenden Aufgabe.
  • Eine Aufgabenbeschreibung wird angezeigt. Die Parameterwerte sind angepasst.
  • Lösung nach Drücken von „Musterlösung”.
  • Die Nummer  0  entspricht einem „Reset”:  Gleiche Einstellung wie zu Beginn.
  • Alle Zeiten, Frequenzen, Signalwerte und Leistungen sind normiert zu verstehen.


(1)  Der Eingangsimpuls sei gaußförmig mit  $A_g=1,\ \Delta t_g=1,\ \tau_g=1$.  Welche Einstellung führt zum „Matched–Filter”?  Wie groß ist  $10 \cdot \lg \ \rho_{\rm MF}$  mit  $N_0=0.01$?

  •  Das Matched–Filter muss ebenfalls einen gaußförmigen Verlauf haben und es muss gelten:  $\Delta t_h=\Delta t_g=1,\ \tau_h =\tau_g=1$   ⇒   $T_{\rm D} = \tau_h +\tau_g=2$.
  •  Das (momentane) Signal–zu–Rauschleistungsverhältnis am Filterausgang ist  $\rho _{\rm MF} = { {2 \cdot E_g } }/{ {N_0 } } \approx 141.4$  ⇒   $10 \cdot \lg \ \rho _{\rm MF} \approx 21.5$  dB.
  •  Mit keinem anderen Filter als dem Matched–Filter ist dieses  $\rm SNR$  (oder ein noch besseres)  zu erreichen.

(2)  Das Matched–Filter bei rechteckförmigen Eingangsimpuls mit  $A_g=1,\ \Delta t_g=1,\ \tau_g=0$  ist ein Spalt–Tiefpass   ⇒   rechteckförmige Impulsantwort.
            Wie groß ist hier   $10 \cdot \lg \ \rho_{\rm MF}$  mit  $N_0=0.01$? Interpretieren Sie alle dargestellten Grafiken und die numerischen Ergebnisse auf verschiedene Art und Weise.

  •  Die eingestellten Filterparameter sind  $A_h=A_g=1, \ \Delta t_h=\Delta t_g=1,\ \tau_h =\tau_g=0$   ⇒   $T_{\rm D} = \tau_h +\tau_g=0$   ⇒   $\rho _{\rm MF} = 200$   ⇒   $10 \cdot \lg \ \rho _{\rm MF} \approx 23$  dB.
  •  Die Impulsenergie ist das Integral über $g^2(t)$   ⇒   $E_g = A_g^2 \cdot \Delta t_g=1$   ⇒   $\rho _{\rm MF} = 2 \cdot E_g /N_0 =200$.  $T_{\text{D, opt} }=0$  ist hier implizit berücksichtigt.
  •  Eine andere Gleichung lautet:  $\rho_d (T_{\rm D}) =d_{\rm S}^2 (T_{\rm D})/\sigma_d^2$.  Die Rauschvarianz kann z. B. als Integral über  $h^2(t)$  berechnet werden:  $\sigma_d^2= N_0 \cdot \Delta t_h/2 = 0.005$.
  •  Das Nutzsignal  $d_{\rm S} (t)= g(t) * h(t)$  hat einen dreieckförmigen Verlauf mit dem Maximum  $d_{\rm S} (T_{\rm D, \ opt} = 0 )= 1$   ⇒   $\rho_d (T_{\rm D, \ opt} = 0 ) = 200= \rho _{\rm MF}$.

(3)  Es gelten weiter die Einstellungen von  (2)  mit Ausnahme von  $N_0=0.02 $  statt  $N_0=0.01$.  Welche Veränderungen sind erkennbar?

  •  Der einzige Unterschied ist die doppelt so große Rauschvarianz  $\sigma_d^2= 0.01$   ⇒   $\rho_d (T_{\rm D, \ opt} = 0 ) = 100= \rho _{\rm MF}$   ⇒   $10 \cdot \lg \rho_{\rm MF} =20$  dB.

(4)  Es gelten weiter die Einstellungen von  (3)  mit Ausnahme von  $T_{\rm D} = 0.1 $  statt  $T_{\rm D, \ opt} = 0$.  Wie wirkt sich dieser nichtoptimale Detektionszeitpunkt aus?

  •  Nun ist der Nutzabtastwert  $d_{\rm S} (T_{\rm D} = 0.1 )= 0.9$  kleiner   ⇒   $\rho_d (T_{\rm D} = 0.1 ) =0.9^2/0.01= 81< \rho _{\rm MF}$.  Es ergibt sich eine Verschlechterung um knapp ein dB.
  •  Für die weiteren Aufgaben wird vom optimalen Detektionszeitpunkt  $T_{\rm D, \ opt}$  ausgegangen, wenn nicht explizit etwas anderes angegeben wird.

(5)  Es gelten wieder die Einstellungen von  (3)  mit Ausnahme einer niedrigeren Impulsantwort  $A_h = 0.8 $  statt  $A_h = 1$.  Interpretieren Sie die Veränderungen.

  •  Es handelt sich auch mit  $A_h \ne A_g$  um ein Matched-Filter, solange  $h(t)$  formgleich mit  $g(t)$  ist   ⇒   $\rho _{\rm MF} = { {2 \cdot E_g } }/{ {N_0 } } =100$   ⇒   $10 \cdot \lg \rho_{\rm MF} =20$  dB.
  •  Die Gleichung  $\rho_d (T_{\rm D}=0) =d_{\rm S}^2 (T_{\rm D}=0)/\sigma_d^2$  führt zum gleichen Ergebnis, da  ${d_{\rm S}}^2 (T_{\rm D})$  und  $\sigma_d^2$  gegenüber  (3)  jeweils um den Faktor  $0.8^2$  vermindert wird.

(6)  Gegenüber  (5)  wird nun die Höhe des Eingangsimpulses  $g(t)$  von  $A_g = 1$  auf  $A_g = 1.25$  erhöht.  Beschreibt hier  $h(t)$  ein Matched-Filter?  Wie groß ist  $\rho_{\rm MF}$?

  •  Auch hier liegt ein Matched-Filter vor, da  $h(t)$  und  $g(t)$  formgleich sind.  Mit  $E_g = 1.25^2$:     $\rho _{\rm MF} = { {2 \cdot 1.25^2 } }/{ 0.02 } =156.25$  ⇒  $10 \cdot \lg \rho_{\rm MF} \approx 21.9$ dB.
  •  Der höhere Wert  $21.9$ dB gegenüber  (5)  lässt sich dadurch erklären, dass bei gleicher Rauschvarianz  $\sigma_d^2= 0.0064$  der Nutzabtastwert wieder  ${d_{\rm S}} (T_{\rm D}) = 1$  ist.

(7)  Wir gehen weiter von der Rechteck–Rechteck–Kombination aus mit  $A_h=A_g=1,\ \Delta t_h=\Delta t_g=1,\ \tau_h=\tau_g=0,\ N_0 =0.02,\ T_{\rm D}=0$. 
            Interpretieren Sie die Ergebnisse nach Variation der äquivalenten Impulsdauer  $\Delta t_h$  von  $h(t)$  im Bereich  $0.6$ ... $1.4$.  Nutzen Sie die Grafikdarstellung über  $\Delta t_h$.

  •  Das Optimum ergibt sich erwartungsgemäß für die äquivalente Impulsdauer  $\Delta t_h=\Delta t_g=1$.  Dann ist  $10 \cdot \lg \ \rho_d (T_{\rm D, \ opt} = 0 ) =20$ dB  $\big(= 10 \cdot \lg \rho_{\rm MF}\big)$.
  •  Ist  $\Delta t_h<\Delta t_g=1$, so ist das Nutzsignal trapezförmig.  Für  $\Delta t_h=0.6$:   $d_{\rm S} (T_{\rm D}=0)= 0.6$ und  $\sigma_d^2\approx0.006$   ⇒   $10 \cdot \lg \ \rho_d (T_{\rm D, \ opt} = 0 ) \approx 17.8$ dB.
  •  Auch für  $\Delta t_h>1$  ist das Nutzsignal trapezförmig, aber trotzdem  $d_{\rm S} (T_{\rm D}=0)= 1$.  Die Rauschvarianz  $\sigma_d^2$  nimmt kontinuierlich mit  $\Delta t_h$  zu.
  •  Für  $\Delta t_h=1.4$  ist  $\sigma_d^2=0.0140$   ⇒   $10 \cdot \lg \ \rho_d (T_{\rm D, \ opt} = 0 ) \approx 18.5$ dB.  Gegenüber dem Matched–Filter  $(\Delta t_h=1)$  beträgt die Verschlechterung ca.  $1.5$  dB.

(8)  Interpretieren Sie nun die Ergebnisse für verschiedene  $\Delta t_g$  des Eingangsimpulses  $g(t)$  im Bereich  $0.6$ ... $1.4$.  Nutzen Sie die Grafikdarstellung über  $\Delta t_g$.

  •  Beachten Sie:  Die blaue Kurve  $10 \cdot \lg \ \rho_d (T_{\rm D,\ opt} )$  ist die Differenz aus  $20\cdot \lg \ \big [{K \cdot d_{\rm S}} (T_{\rm D,\ opt}) \big ]$   (violette Kurve)  und  $20\cdot \lg \ \big [K \cdot \sigma_d \big ]$  (grüne Kurve).
  •  Beim betrachteten Parametersatz und  $K=10$  ist der grüne Term  $20\cdot \lg \ \big [K \cdot \sigma_d \big ] = 0$ dB  für alle  $\Delta t_g$   ⇒   die blaue und die violette Kurve sind identisch.
  •  Die blaue Kurve  $10 \cdot \lg \ \rho_d (T_{\rm D,\ opt} )$  steigt von  $15.6$  dB  $($für  $\Delta t_g = 0.6)$  bis  $20$  dB  $($für  $\Delta t_g = 1)$  kontinuierlich an und bleibt für  $\Delta t_g > 1$  dann konstant.
  •  Die Einstellung  $\Delta t_g = 1.4,\ \Delta t_h = 1$  ergibt aber kein Matched-Filter.  Vielmehr gilt mit  $\Delta t_h = \Delta t_g = 1.4$:    $10 \cdot \lg \ \rho_{\rm MF}=10 \cdot \lg \ (2 \cdot E_g/N_0) \approx 21.5$ dB.
  •  Die Grafikdarstellung über  $\Delta t_h$  mit der Grundeinstellung  $\Delta t_g = 1.4,\ \Delta t_h = 1$  zeigt nun einen monotonen Anstieg der blauen Kurve   $10 \cdot \lg \ \rho_d (T_{\rm D,\ opt} )$.
  •  Für  $\Delta t_h = 0.6$  ergibt sich  $10 \cdot \lg \ \rho_d (T_{\rm D,\ opt} )\approx 17.8$ dB, für  $\Delta t_h = 1.4$  dagegen  $10 \cdot \lg \ \rho_d (T_{\rm D,\ opt} )\approx 21.5$ dB  $=10 \cdot \lg \ \rho_{\rm MF}$.

(9)  Wir betrachten den Exponentialimpuls  $g(t)$ und den Tiefpass erster Ordnung sowie  $A_h=A_g=1,\ \Delta t_h=\Delta t_g=1,\ \tau_h=\tau_g=0,\ N_0 =0.02,\ T_{\rm D}=1$. 
            Erfüllt diese Einstellung den Matched-Filter-Kriterien?  Begründen Sie Ihre Antworten mit möglichst vielen Argumenten.

  •  Hier gilt  $h(t)=g(t)$.  Bei einer Matched-Filter-Konfiguration müsste  $h(t)={\rm const.} \cdot g(T_{\rm D}-t)$  gelten.
  •  Das Detektionsnutzsignal  $d_{\rm S}(t)$  hat keinen symmetrischen Verlauf um das Maximum. Beim Matched-Filter müsste  $d_{\rm S}(T_{\rm D}-t) = d_{\rm S}(T_{\rm D}+t) $  gelten.
  •  Trotz  $\Delta t_h=\Delta t_g$  ist  $10 \cdot \lg \ \rho_d (T_{\rm D,\ opt}) \approx 14.3$ dB   kleiner als  $10 \cdot \lg \ \rho _{\rm MF} = 10 \cdot \lg \ 2 \cdot E_g/N_0 \approx 17$ dB.

(10)  Was ändert sich bei sonst gleichen Einstellungen mit dem „extrem akausalen Filter”?  Erfüllt die Einstellung die Matched-Filter-Kriterien?  Begründung.

  •  Hier gilt nun  $h(t)=g(-t)$  und das Detektionsnutzsignal  $d_{\rm S}(t)$  ist symmetrisch um $t=0$.  Sinnvollerweise sollte hier  $T_{\rm D} = 0 $  gewählt werden.
  •  Damit erhält man für  $10 \cdot \lg \ \rho_d (T_{\rm D,\ opt}) =10 \cdot \lg \ d_{\rm S}^2 (T_{\rm D,\ opt})/\sigma_d^2 = 17$ dB   den gleichen Wert wie für  $10 \cdot \lg \ \rho _{\rm MF} = 10 \cdot \lg \ 2 \cdot E_g/N_0 = 17$ dB.
  •  Das Nutzsignal  $d_{\rm S}(t)$  ist formgleich mit der Energie–AKF des Sendeimulses  $g(t)$.  Das Matched-Filter bündelt die Energie um den geeigneten Zeitpunkt  $T_{\rm D,\ opt}$.

(11)  Mit welchem Rechteckimpuls  $g(t)$  erreicht man mit dem entsprechend angepassten Filter das gleiche  $\rho _{\rm MF}=50$  wie in Aufgabe  (10)
            Mit  $A_h=A_g=1,\ \Delta t_h=\Delta t_g=0.5$  oder mit $A_h=A_g=0.5,\ \Delta t_h=\Delta t_g=1$ ?

  •  Aus der Gleichung  $\rho _{\rm MF} = 2 \cdot E_g/N_0$  geht bereits hervor, dass das SNR nur von der Energie  $E_g$  des Eingangsimpulses abhängt und nicht von dessen Form.
  •  Der Exponentialimpuls mit  $A_g=1,\ \Delta t_g=1$  hat die Energie  $E_g=0.5$.  Der Rechteckimpuls mit  $A_g=1,\ \Delta t_g=0.5$  ebenfalls   ⇒   $\rho _{\rm MF}=50$.
  •  Dagegen besitzt der Rechteckimpuls mit  $A_g=0.5,\ \Delta t_g=1$  eine kleinere Energie   ⇒   $E_g=0.25$   ⇒   $\rho _{\rm MF}=25$   ⇒   $10 \cdot \lg \ \rho _{\rm MF} = 14$ dB.

Zur Handhabung des Applets


Bildschirmabzug der englischen Version

    (A)     Auswahl des Eingangsimpulses  $g(t)$:
                  Rechteck | Gauß | Exponential

    (B)   Parameterwahl des Eingangsimpulses:
                  Amplitude  $A_g$,     äquivalente Impulsdauer  $\Delta t_g$,
                  Verschiebung  $\tau_g$

    (C)     Auswahl der Empfangsfilter–Impulsantwort  $h(t)$:
                  Spalt-TP | Gauß-TP | Tiefpass 1. Ordnung | extrem akausal

    (D)     Parameterwahl der Impulsantwort:
                  Amplitude  $A_h$,     äquivalente Impulsdauer  $\Delta t_h$,
                  Verschiebung  $\tau_h$,     Detektionszeitpunkt  $T_{\rm D}$

    (E)     Skizzen von  $g(t)$  $($rot$)$  und  $h(t)$  $($blau$)$

    (F)     Skizze des Faltungsergebnisses  $d_{\rm S}= g(t)\star h(t)$

    (G)     Eingabe der einseitigen Rauschleistungsdichte  $N_0$

    (H)     Auswahl, ob im Bereich  (K)  die Simulationsergebnisse
                  numerisch oder grafisch dargestellt werden sollen

    ( I )     Darstellungsbereich für  $h(t)^2$

    (J)     Darstellungsbereich für  $|H(f)|^2$

    (K)     Bereich für numerische bzw. grafische Ausgabe

    (L)     Bereich für Übungen:  Aufgabenauswahl

    (M)     Bereich für Übungen:  Fragen, Musterlösung

Über die Autoren

Dieses interaktive Berechnungstool wurde am  »Lehrstuhl für Nachrichtentechnik«  der  »Technischen Universität München«  konzipiert und realisiert.

  • Die erste Version wurde 2006 von  »Markus Elsberger«  im Rahmen seiner Diplomarbeit  $($LB$)$ mit  »FlashMX–Actionscript«  erstellt  $($Betreuer:  Günter Söder$)$.


Die Umsetzung dieses Applets auf HTML 5 wurde durch die  »Exzellenzinitiative«  der TU München finanziell unterstützt. Wir bedanken uns.



Nochmalige Aufrufmöglichkeit des Applets in neuem Fenster

Applet in neuem Tab öffnen   Open English Version