Applets:Physical Signal & Equivalent Lowpass Signal: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
(24 dazwischenliegende Versionen von 3 Benutzern werden nicht angezeigt)
Zeile 1: Zeile 1:
{{LntAppletLink|analPhysSignal}}
+
{{LntAppletLinkEn|physAnLPSignal_en}}
  
 
==Applet Description==
 
==Applet Description==
 
<br>
 
<br>
This applet shows the relationship between the physical bandpass signal $x(t)$ and the associated analytic signal $x_+(t)$. It is assumed that the bandpass signal $x(t)$ has a frequency-discrete spectrum $X(f)$:
+
This applet shows the relationship between the physical bandpass signal $x(t)$ and the associated equivalent lowpass signal $x_{\rm TP}(t)$. It is assumed that the bandpass signal $x(t)$ has a frequency-discrete spectrum $X(f)$:
:$$x(t) = x_{\rm U}(t) + x_{\rm T}(t) + x_{\rm O}(t) = A_{\rm U}\cdot \cos\left(2\pi f_{\rm U}\cdot t- \varphi_{\rm U}\right)+A_{\rm T}\cdot \cos\left(2\pi f_{\rm T}\cdot t- \varphi_{\rm T}\right)+A_{\rm O}\cdot \cos\left(2\pi f_{\rm O}\cdot t- \varphi_{\rm O}\right). $$
+
:$$x(t) = x_{\rm T}(t) + x_{\rm O}(t)+ x_{\rm U}(t) = A_{\rm T}\cdot \cos\left(2\pi f_{\rm T}\cdot t- \varphi_{\rm T}\right)+A_{\rm O}\cdot \cos\left(2\pi f_{\rm O}\cdot t- \varphi_{\rm O}\right) + A_{\rm U}\cdot \cos\left(2\pi f_{\rm U}\cdot t- \varphi_{\rm U}\right). $$
The physical signal $x(t)$ is thus composed of three [[Signaldarstellung/Harmonische_Schwingung|harmonic oscillations]], a constellation that can be found, for example, in the ''Double-sideband Amplitude Modulation''  
+
The physical signal $x(t)$ is thus composed of three harmonic oscillations, a constellation that can be found, for example, in the ''Double-sideband Amplitude Modulation''  
 
*of the message signal $x_{\rm N}(t) = A_{\rm N}\cdot \cos\left(2\pi f_{\rm N}\cdot t- \varphi_{\rm N}\right)$ &nbsp; &rArr; &nbsp; in German: &nbsp;  '''N'''achrichtensignal  
 
*of the message signal $x_{\rm N}(t) = A_{\rm N}\cdot \cos\left(2\pi f_{\rm N}\cdot t- \varphi_{\rm N}\right)$ &nbsp; &rArr; &nbsp; in German: &nbsp;  '''N'''achrichtensignal  
 
*with the carrier signal $x_{\rm T}(t) = A_{\rm T}\cdot \cos\left(2\pi f_{\rm T}\cdot t - \varphi_{\rm T}\right)$ &nbsp; &rArr; &nbsp; in German: &nbsp; '''T'''rägersignal.
 
*with the carrier signal $x_{\rm T}(t) = A_{\rm T}\cdot \cos\left(2\pi f_{\rm T}\cdot t - \varphi_{\rm T}\right)$ &nbsp; &rArr; &nbsp; in German: &nbsp; '''T'''rägersignal.
Zeile 12: Zeile 12:
 
The nomenclature is also adapted to this case:
 
The nomenclature is also adapted to this case:
 
* $x_{\rm O}(t)$ denotes the &bdquo;upper sideband&rdquo; &nbsp; (in German: &nbsp; '''O'''beres Seitenband) with the amplitude $A_{\rm O}= A_{\rm N}/2$, the frequency $f_{\rm O} = f_{\rm T} + f_{\rm N}$ and the phase $\varphi_{\rm O} = \varphi_{\rm T} + \varphi_{\rm N}$.
 
* $x_{\rm O}(t)$ denotes the &bdquo;upper sideband&rdquo; &nbsp; (in German: &nbsp; '''O'''beres Seitenband) with the amplitude $A_{\rm O}= A_{\rm N}/2$, the frequency $f_{\rm O} = f_{\rm T} + f_{\rm N}$ and the phase $\varphi_{\rm O} = \varphi_{\rm T} + \varphi_{\rm N}$.
*Similarly, for the &bdquo;lower sideband&rdquo; &nbsp; (in German: &nbsp; '''U'''nteres Seitenband) $x_{\rm U}(t)$ with $f_{\rm U} = f_{\rm T} + f_{\rm N}$, $A_{\rm U}= A_{\rm O}$ and $\varphi_{\rm U} = -\varphi_{\rm O}$.
+
*Similarly, for the &bdquo;lower sideband&rdquo; &nbsp; (in German: &nbsp; '''U'''nteres Seitenband) $x_{\rm U}(t)$ with $f_{\rm U} = f_{\rm T} - f_{\rm N}$, $A_{\rm U}= A_{\rm O}$ and $\varphi_{\rm U} = -\varphi_{\rm O}$.
  
  
The associated analytical signal is:
+
The associated equivalent lowpass&ndash;signal is $f_{\rm O}\hspace{0.01cm}' = f_{\rm O}- f_{\rm T} > 0$, &nbsp; $f_{\rm U}\hspace{0.01cm}' = f_{\rm U}- f_{\rm T} < 0$ &nbsp;and &nbsp;$f_{\rm T}\hspace{0.01cm}' =  0$:
  
:$$x_+(t) = x_{\rm U+}(t) + x_{\rm T+}(t) + x_{\rm O+}(t) = A_{\rm U}\cdot {\rm e}^{\hspace{0.05cm}{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}(2\pi \hspace{0.05cm}\cdot \hspace{0.05cm}f_{\rm U}\hspace{0.05cm}\cdot \hspace{0.05cm}t- \varphi_{\rm U})}
+
:$$x_{\rm TP}(t) = x_\text{TP, T}(t) + x_\text{TP, O}(t) + x_\text{TP, U}(t) = A_{\rm T}\cdot {\rm e}^{-{\rm j} \varphi_{\rm T} } \hspace{0.1cm}+ \hspace{0.1cm} A_{\rm O}\cdot {\rm e}^{-{\rm j} \varphi_{\rm O} } \cdot {\rm e}^{ {\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}2\pi \hspace{0.05cm}\cdot \hspace{0.05cm}f_{\rm O}\hspace{0.01cm}'\hspace{0.05cm}\cdot \hspace{0.05cm}t}\hspace{0.1cm}+ \hspace{0.1cm}
\hspace{0.1cm}+ \hspace{0.1cm}A_{\rm T}\cdot {\rm e}^{\hspace{0.05cm}{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}(2\pi \hspace{0.05cm}\cdot \hspace{0.05cm}f_{\rm T}\hspace{0.05cm}\cdot \hspace{0.05cm}t- \varphi_{\rm T})}
+
A_{\rm U}\cdot {\rm e}^{-{\rm j} \varphi_{\rm U} } \cdot {\rm e}^{ {\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}2\pi \hspace{0.05cm}\cdot \hspace{0.05cm}f_{\rm U}\hspace{0.01cm}'\hspace{0.05cm}\cdot \hspace{0.05cm}t} . $$
\hspace{0.1cm}+\hspace{0.1cm} A_{\rm O}\cdot {\rm e}^{\hspace{0.05cm}{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}(2\pi \hspace{0.05cm}\cdot \hspace{0.05cm}f_{\rm O}\hspace{0.05cm}\cdot \hspace{0.05cm}t- \varphi_{\rm O})}. $$
 
  
[[Datei:Zeigerdiagramm_2a_version2.png|right|frame|Analytical signal at the time $t=0$]]
+
[[Datei:Ortskurve_1.png|right|frame|Equivalent low-pass signal currently $t=0$ for cosinusoidal carrier &nbsp; &rArr; &nbsp; $\varphi_{\rm T} = 0$]]
The program displays $x_+(t)$ as the vectorial sum of three rotating pointers (all with positive rotation) as a violet dot (see example graphic for start time $t=0$):
+
The program shows $x_{\rm TP}(t)$ as the vectorial sum of three rotation pointers as a violet dot (see figure for start time $t=0$ and cosinusoidal carrier):
  
*The (red) pointer of the carrier $x_{\rm T+}(t)$ with length $A_{\rm T}$ and zero phase position $\varphi_{\rm T} = 0$ rotates at constant angular velocity $2\pi \hspace{0.05cm}\cdot \hspace{0.05cm}f_{\rm T}$ (one revolution in time $1/f_{\rm T})$.
+
*The (red) pointer of the carrier $x_\text{TP, T}(t)$ with the length $A_{\rm T}$ and the zero phase position $\varphi_{\rm T}=0$ is fixed in the complex plane. So it applies to all times $t$: &nbsp; $x_{\rm TP}(t)= A_{\rm T}\cdot {\rm e}^{-{\rm j} \varphi_{\rm T} }$.
  
*The (blue) pointer of the upper sideband $x_{\rm O+}(t)$ with length $A_{\rm O}$ and zero phase position $\varphi_{\rm O}$ rotates at the angular velocity $2\pi \hspace{0.05cm}\cdot \hspace{0.05cm}f_{\rm O}$, which is slightly faster than $x_{\rm T+}(t)$.
+
*The (blue) pointer of the upper sideband $x_\text{TP, O}(t)$ with the length $A_{\rm O}$ and the zero phase position $\varphi_{\rm O}$ rotates at the angular velocity $2\pi \hspace{0.05cm}\cdot \hspace{0.05cm}f_{\rm O}\hspace{0.01cm}'$ in mathematically positive direction (one revolution in time $1/f_{\rm O}\hspace{0.01cm}')$.
  
*The (green) pointer of the lower sideband $x_{\rm U+}(t)$ with length $A_{\rm U}$ and zero phase position $\varphi_{\rm U}$ rotates at the angular velocity $2\pi \hspace{0.05cm}\cdot \hspace{0.05cm}f_{\rm U}$, which is slightly faster than $x_{\rm T+}(t)$.
+
*The (green) pointer of the lower sideband $x_{\rm U+}(t)$ with the length $A_{\rm U}$ and the zero phase position $\varphi_{\rm U}$ rotates at the angular velocity $2\pi \hspace{0.05cm}\cdot \hspace{0.05cm}f_{\rm U}\hspace{0.01cm}'$, because of $f_{\rm U}\hspace{0.01cm}'<0$ counterclockwise.
  
 +
*With $f_{\rm U}\hspace{0.01cm}' = -f_{\rm O}\hspace{0.01cm}'$ the blue and green pointers will spin at the same speed but in different directions. Also, if $A_{\rm O} = A_{\rm U}$ and $\varphi_{\rm U} = -\varphi_{\rm O}$, then $x_{\rm TP}(t)$ moves on a straight line with a incline of $\varphi_{\rm T}$.
  
The time course of $x_+(t)$ is also referred to below as '''Pointer Diagram'''. The relationship between the physical bandpass signal $x(t)$ and the associated analytic signal $x_+(t)$ is:
 
  
:$$x(t) = {\rm Re}\big [x_+(t)\big ].$$
+
''Note:'' &nbsp; In the figure $\varphi_{\rm O} = +30^\circ$. From this follows for the start time $t=0$ the angle of the upper sideband (OSB, blue pointer) with respect to the coordinate system: &nbsp; $\phi_{\rm O} = -\varphi_{\rm O} = -30^\circ$. Likewise, the zero phase position $\varphi_{\rm U} = -30^\circ$ of the lower sideband (USB, green pointer) follows for the phase angle to be considered in the complex plane: &nbsp; $\phi_{\rm U} = +30^\circ$.
  
''Note:'' &nbsp; The graphic applies to $\varphi_{\rm O} = +30^\circ$. From this follows for the start time $t=0$ the angle with respect to the coordinate system: &nbsp; $\phi_{\rm O}=-\varphi_{\rm O}=-30^\circ$. Similarly, from the null phantom $\varphi_{\rm U}=-30^\circ$ of the lower sideband follows for the phase angle to be considered in the complex plane: &nbsp; $\phi_{\rm U}=+30^\circ$.
 
  
 +
The temporal process of $x_{\rm TP}(t)$ is also referred to below as &bdquo;locus&rdquo;. The relationship between $x_{\rm TP}(t)$ and the physical bandpass signal $x(t)$ is given in the section and the associated analytic signal is $x_+(t)$ :
  
[[Applets:Physikalisches_Signal_%26_Analytisches_Signal|'''German description''']]  
+
:$$x_{\rm TP}(t) = x_{\rm +}(t)\cdot {\rm e}^{-{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}2 \pi \cdot f_{\rm T}\cdot \hspace{0.05cm}t},$$
 +
:$$x_{\rm +}(t) = x_{\rm TP}(t)\cdot {\rm e}^{+{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}2 \pi \cdot f_{\rm T}\cdot \hspace{0.05cm}t}.$$
 +
 
 +
 
 +
 
 +
 
 +
[[Applets:Physikalisches_Signal_%26_Äquivalentes_TP-Signal|'''German description''']]
  
 
==Theoretical Background==
 
==Theoretical Background==
 
<br>
 
<br>
===Description of bandpass signals===
+
===Description of Bandpass Signals===
[[Datei:Zeigerdiagramm_1a.png|right|frame|Bandpass&ndash;spectrum $X(f)$ |class=fit]]
+
[[Datei:Zeigerdiagramm_1a.png|right|frame|bandpass spectrum $X(f)$ |class=fit]]
We consider '''bandpass signals''' $x(t)$ with the property that their spectra $X(f)$ are not in the range around the frequency $f=0$, but by a carrier frequency $f_{\rm T}$. In most cases it can also be assumed that the bandwidth is $B \ll f_{\rm T}$.
+
We consider '''bandpass signals''' $x(t)$ with the property that their spectra $X(f)$ are not in the range around the frequency $f=0$, but around a carrier frequency $f_{\rm T}$. In most cases it can also be assumed that the bandwidth is $B \ll f_{\rm T}$.
  
The figure shows such a bandpass spectrum $X(f)$. Assuming that the associated $x(t)$ is a physical signal and thus real, the spectral function $X(f)$ has a symmetry with respect to the frequency $f = 0$&nbsp; &rArr; &nbsp; $x(t)$ is an even function &nbsp; &rArr; &nbsp; $x(-t)=x(t)$, so $X(f)$ is real and even.
+
The figure shows such a bandpass spectrum $X(f)$. Assuming that the associated $x(t)$ is a physical signal and thus real, the spectral function $X(f)$ has a symmetry with respect to the frequency $f = 0$, if $x(t)$ is an even function &nbsp; &rArr; &nbsp; $x(-t)=x(t)$, $X(f)$ is real and even.
  
  
Beside the physical signal $x(t)\ \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \ X(f)$ we use for the description of Bandpass signals alike:
+
Beside the physical signal $x(t)\ \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \ X(f)$, one can also use the following descriptions of bandpass signals:
*the analytic signal $x_+(t)\ \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \ X_+(f)$, see next page,
+
*the analytic signal $x_+(t)\ \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \ X_+(f)$, see applet [[Applets:Physical_Signal_%26_Analytic_Signal|Physical Signal & Analytic Signal]],
*the equivalent low-pass &ndash;signal &nbsp; (in German: &nbsp; äquivalentes '''T'''ief'''P'''ass&ndash;Signal) $x_{\rm TP}(t)\ \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \ X_{\rm TP}(f)$, <br>see Applet [[Applets:Physical_Signal_%26_Equivalent_Low-pass_Signal|Physical Signal & Equivalent Low&ndash;pass signal]].
+
*the equivalent lowpass signal $x_{\rm TP}(t)\ \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \ X_{\rm TP}(f)$, see next page
 
<br><br>
 
<br><br>
===Analytical signal &ndash; Frequency domain===
 
  
The '''analytical signal''' $x_+(t)$ belonging to the physical signal $x(t)$ is the time function whose spectrum fulfills the following property:
+
===Spectral Functions of the Analytic and the Equivalent Lowpass Signal===
[[Datei:Zeigerdiagramm_3a.png|right|frame|Construction of the spectral function $X_+(f)$ |class=fit]]
+
 
 +
The '''analytic signal''' $x_+(t)$ belonging to the physical signal $x(t)$ is the time function whose spectrum fulfills the following property:
 +
[[Datei:Ortskurve_2.png|right|frame|spectral functions $X(f)$, $X_+(f)$ and $X_{\rm TP}(f)$ |class=fit]]
 
:$$X_+(f)=\big[1+{\rm sign}(f)\big] \cdot X(f) = \left\{ {2 \cdot
 
:$$X_+(f)=\big[1+{\rm sign}(f)\big] \cdot X(f) = \left\{ {2 \cdot
 
X(f) \; \hspace{0.2cm}\rm for\hspace{0.2cm} {\it f} > 0, \atop {\,\,\,\, \rm 0 \; \hspace{0.9cm}\rm for\hspace{0.2cm} {\it f} < 0.} }\right.$$
 
X(f) \; \hspace{0.2cm}\rm for\hspace{0.2cm} {\it f} > 0, \atop {\,\,\,\, \rm 0 \; \hspace{0.9cm}\rm for\hspace{0.2cm} {\it f} < 0.} }\right.$$
  
The ''signum function'' is for positive values of $f$ equal to $+1$ and for negative $f$ values equal to $-1$.
+
The ''Signum function'' is for positive values of $f$ equal to $+1$ and for negative $f$ values equal to $-1$.
* The (double-sided) limit returns $\sign(0)=0$.
+
*The (double-sided) limit returns $\sign(0) = 0$.
* The index „+” should make it clear that $X_+(f)$ only has parts at positive frequencies.
+
*The index „+” should make it clear that $X_+(f)$ only has parts at positive frequencies.
  
  
From the graph you can see the calculation rule for $X_+(f)$:  
+
From the graph you can see the calculation rule for $X_+(f)$: &nbsp; The actual bandpass spectrum $X(f)$ becomes
 +
*doubled at the positive frequencies, and
 +
*set to zero at the negative frequencies.
  
The actual band pass spectrum $X(f)$ becomes
 
* doubled at the positive frequencies, and
 
* set to zero at the negative frequencies.
 
  
 +
Due to the asymmetry of $X_+(f)$ with respect to the frequency $f = 0$, it can already be said that the time function $x_+(t)$ except for a trivial special case $x_+(t)= 0 \ \ \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\,\ \ X_+(f)= 0$ is always complex.
  
Due to the asymmetry of $X_+(f)$ with respect to the frequency $f=0$, it can already be said that the time function $x_+(t)$ except for a trivial special case $x_+(t)=0 \ \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\,X_+(f)=0$ is always complex.
 
<br clear=all>
 
  
===Analytical signal &ndash; Time domain===
+
The spectrum $X_{\rm TP}(f)$ of the equivalent lowpass signal is obtained by shifting $X_+(f)$ to the left by the carrier frequency $f_{\rm T}$:
At this point it is necessary to briefly discuss another spectral transformation.
+
:$$X_{\rm TP}(f)= X_+(f+f_{\rm T}).$$
  
{{BlaueBox|TEXT=
+
In the time domain this operation corresponds to the multiplication of $x_{\rm +}(t)$ with the complex exponential function with negative exponent:
$\text{Definition:}$&nbsp;
+
:$$x_{\rm TP}(t) = x_{\rm +}(t)\cdot {\rm e}^{-{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}2 \pi \cdot f_{\rm T}\cdot \hspace{0.05cm}t}.$$
For the '''Hilbert transformed ''' $ {\rm H}\left\{x(t)\right\}$ of a time function $x(t)$ we have::
 
  
:$$y(t) = {\rm H}\left\{x(t)\right\} = \frac{1}{ {\rm \pi} } \cdot
+
It can be seen that $x_{\rm TP}(t)$ is generally complex. But if $X_+(f)$ is symmetric about the carrier frequency $f_{\rm T}$, $X_{\rm TP}(f)$ is symmetric about the frequency $f=0$ and there is accordingly a real time function $x_{\rm TP}(t)$.
\hspace{0.03cm}\int_{-\infty}^{+\infty}\frac{x(\tau)}{ {t -
+
<br><br>
\tau} }\hspace{0.15cm} {\rm d}\tau.$$
 
  
This particular integral is not solvable in a simple, conventional way, but must be evaluated using the [https://de.wikipedia.org/wiki/Cauchyscher_Hauptwert Cauchy principal value theorem].
+
===$x_{\rm TP}(t)$ Representation of a Sum of Three Harmonic Oscillations===
 
 
Accordingly, in the frequency domain:
 
:$$Y(f) =  {\rm -j \cdot sign}(f) \cdot X(f) \hspace{0.05cm} .$$}}
 
  
 +
In our applet, we always assume a set of three rotating pointers. The physical signal is:
 +
:$$x(t) = x_{\rm T}(t) + x_{\rm O}(t) + x_{\rm U}(t) = A_{\rm T}\cdot \cos\left(2\pi f_{\rm T}\cdot t- \varphi_{\rm T}\right)+A_{\rm O}\cdot \cos\left(2\pi f_{\rm O}\cdot t- \varphi_{\rm O}\right) + A_{\rm U}\cdot \cos\left(2\pi f_{\rm U}\cdot t- \varphi_{\rm U}\right). $$
 +
* Each of the three harmonic oscillations $x_{\rm T}(t)$, $x_{\rm U}(t)$ and $x_{\rm O}(t)$ is represented by an amplitude $(A)$, a frequency $(f)$ and a phase value $(\varphi)$.
 +
*The indices are based on the modulation method [[Modulationsverfahren/Zweiseitenband-Amplitudenmodulation|double sideband amplitude modulation]]. &bdquo;T&rdquo; stands for &bdquo;carrier&rdquo;, &bdquo;U&rdquo; for &bdquo;lower sideband&rdquo; and &bdquo;O&rdquo; for &bdquo;upper Sideband&rdquo;. Similarly, $f_{\rm U} < f_{\rm T}$ and $f_{\rm O} > f_{\rm T}$. There are no restrictions for the amplitudes and phases.
  
The above result can be summarized with this definition as follows:
 
* The analytic signal $x_+(t)$ is obtained from the physical bandpass signal $x(t)$ by adding an imaginary part to $x(t)$ according to the Hilbert transform:
 
  
:$$x_+(t) = x(t)+{\rm j} \cdot {\rm H}\left\{x(t)\right\} .$$
+
The associated equivalent low-pass signal is with $f_{\rm O}\hspace{0.01cm}' = f_{\rm O}- f_{\rm T} > 0$, &nbsp; $f_{\rm U}\hspace{0.01cm}' = f_{\rm U}- f_{\rm T} < 0$ &nbsp;and &nbsp;$f_{\rm T}\hspace{0.01cm}' =  0$:
  
*$\text{H}\{x(t)\}$ disappears only for the case $x(t) = \rm const.$. For all other signal forms, the analytic signal $x_+(t)$ is complex.
+
:$$x_{\rm TP}(t) = x_\text{TP, T}(t) + x_\text{TP, O}(t) + x_\text{TP, U}(t) = A_{\rm T}\cdot {\rm e}^{-{\rm j} \varphi_{\rm T} } \hspace{0.1cm}+ \hspace{0.1cm} A_{\rm O}\cdot {\rm e}^{-{\rm j} \varphi_{\rm O} } \cdot {\rm e}^{ {\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}2\pi \hspace{0.05cm}\cdot \hspace{0.05cm}f_{\rm O}\hspace{0.01cm}'\hspace{0.05cm}\cdot \hspace{0.05cm}t}\hspace{0.1cm}+ \hspace{0.1cm}
 
+
A_{\rm U}\cdot {\rm e}^{-{\rm j} \varphi_{\rm U} } \cdot {\rm e}^{ {\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}2\pi \hspace{0.05cm}\cdot \hspace{0.05cm}f_{\rm U}\hspace{0.01cm}'\hspace{0.05cm}\cdot \hspace{0.05cm}t} . $$
 
 
* From the analytic signal $x_+(t)$, the physical bandpass signal can be easily determined by the following operation:
 
:$$x(t) = {\rm Re}\big[x_+(t)\big] .$$
 
  
 
{{GraueBox|TEXT=
 
{{GraueBox|TEXT=
$\text{Example 1:}$&nbsp; The principle of the Hilbert transformation should be further clarified by the following graphic:
+
$\text{Example 1:}$&nbsp;
*After the left representation $\rm(A)$ one gets from the physical signal $x(t)$ to the analytic signal $x_+(t)$, by adding an imaginary part ${\rm j} \cdot y(t)$.
+
The constellation given here results, for example, in the [[Modulationsverfahren/Zweiseitenband-Amplitudenmodulation#AM-Signale_und_-Spektren_bei_harmonischem_Eingangssignal|double sideband amplitude modulation]] of the message signal $x_{\rm N}(t) = A_{\rm N}\cdot \cos\left(2\pi f_{\rm N}\cdot t- \varphi_{\rm N}\right)$ with the carrier signal $x_{\rm T}(t) = A_{\rm T}\cdot \cos\left(2\pi f_{\rm T}\cdot t - \varphi_{\rm T}\right)$. This is discussed frequently in the exercises.
*Here $y(t) = {\rm H}\left\{x(t)\right\}$ is a real time function that can be indicated in the spectral domain by multiplying the spectrum $X(f)$ with ${\rm - j} \cdot \sign(f)$.
 
  
 +
[[Datei:Ortskurve_5.png|center|frame|Spectrum $X_{\rm TP}(f)$ of the equivalent low&ndash;pass signal for different phase constellations |class=fit]]
  
[[Datei:P_ID2729__Sig_T_4_2_S2b_neu.png|center|frame|To clarify the Hilbert transform]]
+
There are some limitations to the program parameters in this approach:
 +
* The frequencies are always $f\hspace{0.05cm}'_{\rm O} =  f_{\rm N}$ and $f\hspace{0.05cm}'_{\rm U} =  -f_{\rm N}$.
 +
*Without distortion, the amplitude of the sidebands is $A_{\rm O}= A_{\rm U}= A_{\rm N}/2$.
 +
*The respective phase relationships can be seen in the following graphic.
  
The right representation $\rm(B)$ is equivalent to $\rm(A)$. Now $x_+(t) = x(t) + z(t)$ stand with the purely imaginary function $z(t)$. A comparison of the two pictures shows that in fact $z(t) = {\rm j} \cdot y(t)$.}}
+
}}
 
<br><br>
 
<br><br>
  
===Representation of the harmonic oscillation as an analytical signal===
+
===Representation of the Equivalent Lowpass Signal by Magnitude and Phase===
 
 
The spectral function $X(f)$ of a harmonic oscillation $x(t) = A\cdot\text{cos}(2\pi f_{\rm T}\cdot t - \varphi)$ is known to consist of two dirac functions in the frequencies
 
* $+f_{\rm T}$ with the complex weight $A/2 \cdot \text{e}^{-\text{j}\hspace{0.05cm}\varphi}$,
 
* $-f_{\rm T}$ with the complex weight $A/2 \cdot \text{e}^{+\text{j}\hspace{0.05cm}\varphi}$.
 
 
 
 
 
Thus, the spectrum of the analytic signal (that is, without the Dirac function at the frequency $f =-f_{\rm T}$, but doubling at $f =+f_{\rm T}$):
 
 
 
:$$X_+(f) = A \cdot {\rm e}^{-{\rm j} \hspace{0.05cm}\varphi}\cdot\delta (f - f_{\rm
 
T}) .$$
 
  
The associated time function is obtained by applying the [[Signaldarstellung/Gesetzmäßigkeiten_der_Fouriertransformation#Verschiebungssatz|Displacement law]]:
+
The generally complex equivalent lowpass signal
 +
:$$x_{\rm TP}(t) = a(t) \cdot {\rm e}^{ {\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} \phi(t) }$$
 +
can be split into a magnitude function $a(t)$ and a phase function $\phi(t)$ according to the equation given here, where:
 +
:$$a(t) = \vert x_{\rm TP}(t)\vert = \sqrt{ {\rm Re}^2\big [x_{\rm TP}(t)\big ] + {\rm Im}^2\big [x_{\rm TP}(t)\big ] }\hspace{0.05cm},$$
 +
:$$\phi(t) = \text{arc }x_{\rm TP}(t) = \arctan \frac{{\rm Im}\big [x_{\rm TP}(t)\big ]}{{\rm Re}\big [x_{\rm TP}(t)\big ]}.$$
  
:$$x_+(t) = x_{\rm U+}(t) + x_{\rm T+}(t) + x_{\rm O+}(t) = A_{\rm U}\cdot {\rm e}^{\hspace{0.05cm}{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}(2\pi \hspace{0.05cm}\cdot \hspace{0.05cm}f_{\rm U}\hspace{0.05cm}\cdot \hspace{0.05cm}t- \varphi_{\rm U})}
+
The reason for this is that a bandpass signal $x(t)$ is usually described by the equivalent lowpass signal $x_{\rm TP}(t)$ that the functions $a(t)$ and $\phi(t)$ are interpretable in both representations:
\hspace{0.1cm}+ \hspace{0.1cm}A_{\rm T}\cdot {\rm e}^{\hspace{0.05cm}{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}(2\pi \hspace{0.05cm}\cdot \hspace{0.05cm}f_{\rm T}\hspace{0.05cm}\cdot \hspace{0.05cm}t- \varphi_{\rm T})}
+
*The amount $a(t)$ of the equivalent lowpass signal $x_{\rm TP}(t)$ indicates the (time-dependent) envelope of $x(t)$.
\hspace{0.1cm}+\hspace{0.1cm} A_{\rm O}\cdot {\rm e}^{\hspace{0.05cm}{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}(2\pi \hspace{0.05cm}\cdot \hspace{0.05cm}f_{\rm O}\hspace{0.05cm}\cdot \hspace{0.05cm}t- \varphi_{\rm O})}. $$
+
*The phase $\phi(t)$ of $x_{\rm TP}(t)$ denotes the location of the zero crossings of $x(t)$, where:
 +
:&ndash; &nbsp; For $\phi(t)>0$ the zero crossing is earlier than its nominal position &nbsp; &rArr; &nbsp; the signal is leading here.
 +
:&ndash; &nbsp;When $\phi(t)<0$, the zero crossing is later than its target position &nbsp; &rArr; &nbsp; the signal is trailing here.
  
This equation describes a pointer rotating at constant angular velocity $\omega_{\rm T} = 2\pi f_{\rm T}$.
 
  
 
{{GraueBox|TEXT=
 
{{GraueBox|TEXT=
$\text{Example 2:}$&nbsp; Here the coordinate system is rotated by $90^\circ$ (real part up, imaginary part to the left) contrary to the usual representation.
+
$\text{Example 2:}$&nbsp;
 
+
The graph is intended to illustrate this relationship, assuming $A_{\rm U} > A_{\rm O}$ &nbsp; &rArr; &nbsp;  the green pointer (for the lower sideband) is longer than the blue pointer (upper sideband). This is a snapshot at time $t_0$:
[[Datei:P_ID712__Sig_T_4_2_S3.png|center|frame|Pointer diagram of a harmonic oscillation]]
 
 
 
Based on this graphic, the following statements are possible:
 
* At the start time $t = 0$, the pointer of length $A$ (signal amplitude) lies with the angle $-\varphi$ in the complex plane. In the example shown, $\varphi=45^\circ$.
 
* For times $t>0$, the constant angular velocity vector $\omega_{\rm T}$ rotates in a mathematically positive direction, that is, counterclockwise.
 
* The tip of the pointer is thus always on a circle with radius $A$ and needs exactly the time $T_0$, i.e. the period of the harmonic oscillation $x(t)$ for one revolution.
 
* The projection of the analytic signal $x_+(t)$ on the real axis, marked by red dots, gives the instantaneous values of $x(t)$.}}
 
<br><br>
 
  
===Analytical signal representation of a sum of three harmonic oscillations===
+
[[Datei:Ortskurve_3_neu.png|center|frame|bandpass spectrum $X(f)$ |class=fit]]
  
In our applet, we always assume a set of three rotating pointers. The physical signal is:
+
*For these system parameters, the top of the pointer cluster $x_{\rm TP}(t)$ &ndash; that is, the geometric sum of red, blue and green pointers &ndash; on an ellipse.  
:$$x(t) = x_{\rm U}(t) + x_{\rm T}(t) + x_{\rm O}(t) = A_{\rm U}\cdot \cos\left(2\pi f_{\rm U}\cdot t- \varphi_{\rm U}\right)+A_{\rm T}\cdot \cos\left(2\pi f_{\rm T}\cdot t- \varphi_{\rm T}\right)+A_{\rm O}\cdot \cos\left(2\pi f_{\rm O}\cdot t- \varphi_{\rm O}\right). $$
+
* The amount $a(t_0) = \vert x_{\rm TP}(t_0) \vert$ is drawn in black in the left-hand diagram and the phase value $\phi(t_0) = \text{arc }x_{\rm TP}(t_0) > 0$ is indicated in brown color.
* Each of the three harmonic oscillations $x_{\rm T}(t)$, $x_{\rm U}(t)$ and $x_{\rm O}(t)$ is represented by an amplitude $(A)$, a frequency $(f)$ and a phase value $(\varphi)$.
+
*In the graph on the right, the amount $a(t_0) = \vert x_{\rm TP}(t_0) \vert$ of the equivalent low-pass signal indicates the envelope of the physical signal $x(t)$.
*The indices are based on  [[Modulationsverfahren/Zweiseitenband-Amplitudenmodulation|Double sideband Amplitude Modulation]] method. &bdquo;T&rdquo; stands for &bdquo;carrier&rdquo;, &bdquo;U&rdquo; for &bdquo;lower sideband&rdquo; and &bdquo;O&rdquo; for &bdquo;Upper Sideband&rdquo;.  
+
* At $\phi(t) \equiv 0$, all zero crossings of $x(t)$ would occur at equidistant intervals. Because of $\phi(t_0)  > 0$, the signal is leading at the time $t_0$, that is: the zero crossings come earlier than the grid dictates. }}
*Similarly, $f_{\rm U} < f_{\rm T}$ and $f_{\rm O} > f_{\rm T}$. There are no restrictions for the amplitudes and phases.
 
 
 
 
 
The associated analytical signal is:
 
:$$x_+(t) = x_{\rm U+}(t) + x_{\rm T+}(t) + x_{\rm O+}(t) = A_{\rm U}\cdot {\rm e}^{\hspace{0.05cm}{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}(2\pi \hspace{0.05cm}\cdot \hspace{0.05cm}f_{\rm U}\hspace{0.05cm}\cdot \hspace{0.05cm}t- \varphi_{\rm U})}
 
\hspace{0.1cm}+ \hspace{0.1cm}A_{\rm T}\cdot {\rm e}^{\hspace{0.05cm}{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}(2\pi \hspace{0.05cm}\cdot \hspace{0.05cm}f_{\rm T}\hspace{0.05cm}\cdot \hspace{0.05cm}t- \varphi_{\rm T})}
 
\hspace{0.1cm}+\hspace{0.1cm} A_{\rm O}\cdot {\rm e}^{\hspace{0.05cm}{\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}(2\pi \hspace{0.05cm}\cdot \hspace{0.05cm}f_{\rm O}\hspace{0.05cm}\cdot \hspace{0.05cm}t- \varphi_{\rm O})}. $$
 
 
 
{{GraueBox|TEXT=
 
$\text{Example 3:}$&nbsp;
 
For example the constellation given here results in the [[Modulationsverfahren/Zweiseitenband-Amplitudenmodulation#AM-Signale_und_-Spektren_bei_harmonischem_Eingangssignal|double sideband amplitude modulation]] of the message signal $x_{\rm N}(t) = A_{\rm N}\cdot \cos\left(2\pi f_{\rm N}\cdot t- \varphi_{\rm N}\right)$ with the carrier signal $x_{\rm T}(t) = A_{\rm T}\cdot \cos\left(2\pi f_{\rm T}\cdot t - \varphi_{\rm T}\right)$. This is discussed more frequently in the Exercises.
 
 
 
 
 
There are some limitations to the program parameters in this approach:
 
* For the frequencies always apply $f_{\rm O} = f_{\rm T} + f_{\rm N}$ und $f_{\rm U} = f_{\rm T} - f_{\rm N}$.
 
 
 
*Without distortions the amplitude of the sidebands are $A_{\rm O}= A_{\rm U}= A_{\rm N}/2$.
 
*The respective phase relationships can be seen in the following graphic.
 
 
 
[[Datei:Zeigerdiagramm_2_neu.png|center|frame|Spectrum $X_+(f)$ of the analytic signal for different phase constellations |class=fit]]}}
 
  
 
==Exercises==
 
==Exercises==
[[Datei:Zeigerdiagramm_aufgabe_2.png|right]]
+
[[Datei:Exercises_verzerrungen.png|right]]
 
*First select the task number.
 
*First select the task number.
 
*A task description is displayed.
 
*A task description is displayed.
Zeile 181: Zeile 149:
  
  
The number &bdquo;0&rdquo; will reset to the same setting as the program start and will output a text with further explanation of the applet.
+
The number &bdquo;0&rdquo; will reset the program and output a text with the further explanation of the applet.
<br clear=all>
+
 
 +
 
 
In the following, $\rm Green$ denotes the lower sideband &nbsp; &rArr; &nbsp; $\big (A_{\rm U}, f_{\rm U}, \varphi_{\rm U}\big )$, &nbsp;
 
In the following, $\rm Green$ denotes the lower sideband &nbsp; &rArr; &nbsp; $\big (A_{\rm U}, f_{\rm U}, \varphi_{\rm U}\big )$, &nbsp;
 
$\rm Red$ the carrier &nbsp; &rArr; &nbsp; $\big (A_{\rm T}, f_{\rm T}, \varphi_{\rm T}\big )$ and
 
$\rm Red$ the carrier &nbsp; &rArr; &nbsp; $\big (A_{\rm T}, f_{\rm T}, \varphi_{\rm T}\big )$ and
 
$\rm Blue$ the upper sideband &nbsp; &rArr; &nbsp; $\big (A_{\rm O}, f_{\rm O}, \varphi_{\rm O}\big )$.
 
$\rm Blue$ the upper sideband &nbsp; &rArr; &nbsp; $\big (A_{\rm O}, f_{\rm O}, \varphi_{\rm O}\big )$.
 +
 
{{BlaueBox|TEXT=
 
{{BlaueBox|TEXT=
'''(1)''' &nbsp; Consider and interpret the analytic signal  $x_+(t)$ for $\text{Red:} \hspace{0.15cm} A_{\rm T} = 1.5\ \text{V}, \ f_{\rm T} = 50 \ \text{kHz}, \ \varphi_{\rm T} = 0^\circ$. In addition, $A_{\rm U} = A_{\rm O} = 0$.
+
'''(1)''' &nbsp; Let &nbsp; $\text{Red:} \hspace{0.15cm} A_{\rm T} = 1\ \text{V}, f_{\rm T} = 100 \ \text{kHz}, \varphi_{\rm T} = 0^\circ$, &nbsp;  $\text{Green:} \hspace{0.15cm} A_{\rm U} = 0.4 \text{V}, \ f_{\rm U} = 80 \ \text{kHz},  \varphi_{\rm U} = -90^\circ$,  &nbsp;  $\text{Blue:} \hspace{0.15cm} A_{\rm O} = 0.4\ \text{V},  f_{\rm O} = 120 \ \text{kHz},  \varphi_{\rm O} = 90^\circ$.
  
:Which signal values $x_+(t)$ result for $t = 0$, $t = 5 \ \rm &micro; s$ and $t = 20 \ \rm &micro; s$? How large are the corresponding signal values of $x(t)$? }}
+
:Consider and interpret the equivalent lowpass signal $x_{\rm TP}(t)$ and the physical signal $x(t)$. Which period $T_0$ recognizable?}}
  
::&nbsp;For a cosine signal $x_+(t= 0) = A_{\rm T} = 1.5\ \text{V}$. Then $x_+(t)$ rotates in a mathematically positive direction (one revolution per period  $T_0 = 1/f_{\rm T}$):
+
::&nbsp;The equivalent lowpass signal $x_{\rm TP}(t)$ takes from $x_{\rm TP}(t=0)=1\ \text{V}$ on the real axis values between $0.2\ \text{V}$ and $1.8\ \text{V}$ &nbsp; &rArr; &nbsp; phase $\phi(t) \equiv 0$.<br>&nbsp;The amount $|x_{\rm TP}(t)|$ indicates the envelope $a(t)$ of the physical signal $x(t)$. It holds $A_{\rm N} = 0.8\ \text{V}$ and $f_{\rm N} = 20\ \text{kHz}$: &nbsp; $a(t) = A_{\rm T}+ A_{\rm N} \cdot \sin(2\pi\cdot f_{\rm N} \cdot t)$.<br>&nbsp;Both $x_{\rm TP}(t)$ and $x(t)$ are periodically with the period $T_0 = 1/f_{\rm N} = 50\ \rm &micro; s$.
 
 
::&nbsp;$x_+(t= 20 \ {\rm &micro; s}) = x_+(t= 0) =  1.5\ \text{V}\hspace{0.3cm}\Rightarrow\hspace{0.3cm}x(t= 20 \ {\rm &micro; s}= 1.5\ \text{V,}$  
 
::&nbsp;$x_+(t= 5 \ {\rm &micro; s})  =  {\rm j} \cdot 1.5\ \text{V}\hspace{0.3cm}\Rightarrow\hspace{0.3cm}x(t= 5 \ {\rm &micro; s}) = {\rm Re}[x_+(t= 5 \ {\rm &micro; s})] =  0$.
 
  
  
 
{{BlaueBox|TEXT=
 
{{BlaueBox|TEXT=
'''(2)''' &nbsp; How do the ratios change for $\text{Red:} \hspace{0.15cm} A_{\rm T} = 1.0\ \text{V}, \ f_{\rm T} = 100 \ \text{kHz}, \ \varphi_{\rm T} = 90^\circ$?}}
+
'''(2)''' &nbsp; How do the ratios change to '''(1)''' with $f_{\rm U} = 99 \ \text{kHz}$ and $f_{\rm O} = 101 \ \text{kHz}$&nbsp;? How could $x(t)$ have arisen?}}
  
::The signal $x(t)$ is now a sine signal with a smaller amplitude. The analytic signal now starts because of $\varphi_{\rm T} = 90^\circ$ &nbsp; &rArr; &nbsp; $\phi_{\rm T} = -90^\circ$ at $x_+(t= 0) = -{\rm j} \cdot A_{\rm T}$. <br>After that, $x_+(t)$ rotates again in a mathematically positive direction, but twice as fast because of $T_0 = 10 \ \rm &micro; s$ as in $\rm (1)$.
+
::&nbsp;For the envelope $a(t)$ of the signal $x(t)$ we still have $a(t) = A_{\rm T}+ A_{\rm N} \cdot \sin(2\pi\cdot f_{\rm N} \cdot t)$, but now $f_{\rm N} = 1\ \text{kHz}$. Even though it can not be recognized:<br>&nbsp;$x_{\rm TP}(t)$ and $x(t)$ are still periodically: &nbsp; $T_0 = 1\ \rm ms$. Example: Double sideband Amplitude modulation '''(DSB&ndash;AM)''' of a sine signal with cosine carrier.  
  
  
 
{{BlaueBox|TEXT=
 
{{BlaueBox|TEXT=
'''(3)''' &nbsp; Now &nbsp; $\text{Red:} \hspace{0.15cm} A_{\rm T} = 1\ \text{V}, \ f_{\rm T} = 100 \ \text{kHz}, \ \varphi_{\rm T} = 0^\circ$, &nbsp;  $\text{Green:} \hspace{0.15cm} A_{\rm U} = 0.4\ \text{V}, \ f_{\rm U} = 80 \ \text{kHz}, \ \varphi_{\rm U} = 0^\circ$,  &nbsp;  $\text{Blue:} \hspace{0.15cm} A_{\rm O} = 0.4\ \text{V}, \ f_{\rm O} = 120 \ \text{kHz}, \ \varphi_{\rm O} = 0^\circ$.
+
'''(3)''' &nbsp; Which settings have to be changed from '''(2)''' in order to arrive at the DSB&ndash;AM of a cosine signal with sine carrier. What changes over '''(2)'''?}}
 
 
:Consider and interpret the physical signal $x(t)$ the analytic signal $x_+(t)$.}}
 
 
 
::The Signal $x(t)$ results in the double sideband Amplitude Modulation '''(DSB&ndash;AM)''' of the message signals $A_{\rm N}\cdot \cos\left(2\pi f_{\rm N}\cdot t\right)$ with $A_{\rm N} = 0.8\ \text{V}$, $f_{\rm N} = 20\ \text{kHz}$. The carrier $x_{\rm T}(t)$ with $f_{\rm T} = 100\ \text{kHz}$ is also cosinusoidal. The degree of modulation is $m = A_{\rm N}/A_{\rm T} = 0.8$ and the period $T_{\rm 0} = 50\ \text{&micro;s}$.
 
  
::In the phase diagram, the (red) carrier rotates faster than the (green) lower sideband and slower than the (blue) upper sideband. The analytic signal $x_+(t)$ results as the geometric sum of the three rotating hands. It seems that the blue pointer is leading the carrier and the green pointer is following the carrier.
+
::The carrier phase must be changed to $\varphi_{\rm T} = 90^\circ$ &nbsp; &rArr; &nbsp; sine carrier. Similarly, $\varphi_{\rm O} =\varphi_{\rm U} =\varphi_{\rm T} = 90^\circ$ must be set &nbsp; &rArr; &nbsp; cosinusoidal message<br>&nbsp;The locus now lies on the imaginary axis&nbsp; &rArr; &nbsp; $\phi(t) \equiv -90^\circ$. At the beginning $x_{\rm TP}(t=0)= - {\rm j} \cdot 1.8 \ \text{V}$.
  
  
 
{{BlaueBox|TEXT=
 
{{BlaueBox|TEXT=
'''(4)''' &nbsp; The settings of task '''(3)''' continue to apply. Which signal values are obtained at $t=0$, $t=2.5 \ \rm &micro; s$, $t= 5 \ \rm &micro; s$ and $t=10 \ \rm &micro; s$? }}
+
'''(4)''' &nbsp; Now let &nbsp; $\text{Red:} \hspace{0.15cm} A_{\rm T} = 1\ \text{V}, \ f_{\rm T} = 100 \ \text{kHz}, \ \varphi_{\rm T} = 0^\circ$, &nbsp;  $\text{Green:} \hspace{0.15cm} A_{\rm U} = 0.4 \text{V}, \ f_{\rm U} = 80 \ \text{kHz}, \ \varphi_{\rm U} = 0^\circ$,  &nbsp;   $\text{Blue:} \hspace{0.15cm} A_{\rm O} = 0.4\ \text{V}, \ f_{\rm O} = 120 \ \text{kHz}, \ \varphi_{\rm O} = 0^\circ$.
  
::At time $t=0$, all pointers are in the direction of the real axis, so that $x(t=0) = {\rm Re}\big [x+(t= 0)\big] =  A_{\rm U} + A_{\rm T} + A_{\rm O}  =  1.8\ \text{V}$.
+
:What are the characteristics of this system &bdquo;DSB&ndash;AM, where the message signal and carrier are respectively cosinusoidal&rdquo;? What is the degree of modulation $m$?}}
 
 
::Until the time $t=2.5 \ \rm &micro; s$, the red carrier has rotated by $90^\circ$, the blue one by $108^\circ$ and the green one by $72^\circ$. We have $x(t=2.5 \ \rm &micro; s) = {\rm Re}\big [x_+(t= 2.5 \ \rm &micro; s)\big] = 0$, because now the pointer group points in the direction of the imaginary axis. The other sought signal values are $x(t=5 \ \rm &micro; s) = {\rm Re}\big [x_+(t= 5 \ \rm &micro; s)\big] = -1.647\ \text{V}$ and $x(t=10 \ \rm &micro; s) = {\rm Re}\big [x_+(t= 10 \ \rm &micro; s)\big] = 1.247\ \text{V}$.
 
::For $x_+(t)$ a spiral shape results, alternating with a smaller radius and then with a larger radius.
 
  
 +
::&nbsp;The equivalent lowpass signal $x_{\rm TP}(t)$ takes from $x_{\rm TP}(t=0)=1.8\ \text{V}$ on the real axis values between $0.2\ \text{V}$ and $1.8\ \text{V}$ &nbsp; &rArr; &nbsp; phase $\phi(t) \equiv 0$.<br>&nbsp;Except for the start state $x_{\rm TP}(t=0)$ same behavior as at the setting '''(1)'''. The degree of modulation is $m = 0.8$.
  
  
 
{{BlaueBox|TEXT=
 
{{BlaueBox|TEXT=
'''(5)''' &nbsp; How should the phase parameters $\varphi_{\rm T}$, $\varphi_{\rm U}$ and $\varphi_{\rm O}$ be set if both the carrier $x_{\rm T}(t)$ and the message signal $x_{\rm N}(t)$ are sinusoidal?}}
+
'''(5)''' &nbsp; The parameters are still valid according to '''(4)''' with the exception of $A_{\rm T}= 0.6 \text{V}$. What is the degree of modulation $m$? What are the consequences?}}
  
::The parameter selection $\varphi_{\rm T} = \varphi_{\rm U} = \varphi_{\rm O}=90^\circ$ describes the signals $x_{\rm T}(t) = A_{\rm T}\cdot \sin\left(2\pi f_{\rm T}\cdot t\right)$ and $x_{\rm N}(t) = A_{\rm N}\cdot \cos\left(2\pi f_{\rm N}\cdot t\right)$. If, in addition, the message $x_{\rm N}(t)$ is sinusoidal, then $\varphi_{\rm O}=\varphi_{\rm T} - 90^\circ = 0$ and $\varphi_{\rm U}=\varphi_{\rm T} + 90^\circ = 180^\circ$ must be set.
+
::&nbsp;There is now a DSB&ndash;AM with modulation degree $m = 1.333$. For $m > 1$, the simpler  ''Envelope Demodulation'' is not applicable, since the phase function $\phi(t) \in \{ 0, \ \pm 180^\circ\}$ is no more constant and the envelope $a(t)$ no more matches the message signal. Rather, the complex  ''Synchronous Demodulation'' must be used. Envelope detection would produce nonlinear distortions.
  
  
 
{{BlaueBox|TEXT=
 
{{BlaueBox|TEXT=
'''(6)''' &nbsp; The settings of task '''(3)''' apply except $A_{\rm T} = 0.6\ \text{V}$. Which modulation method is described here?
+
'''(6)''' &nbsp; The parameters are still valid according to '''(4)''' or '''(5)''' with the exception from $A_{\rm T}= 0$ on &nbsp; &rArr; &nbsp; $m \to \infty$. Which modulation method is described in this way?}}
 
 
: What are the consequences of this? What changes with $A_{\rm T} = 0$? }}
 
 
 
::It is a '''DSB&ndash;AM with carrier''' with the modulation degree $m=0.8/0.6 = 1.333$. For $m > 1$, however,  [[Modulationsverfahren/Synchrondemodulation|synchronous demodulation]] is required. [[Modulationsverfahren/Hüllkurvendemodulation|envelope detection]] no longer works.
 
  
::With $A_{\rm T} = 0$ &nbsp; &rArr; &nbsp; $m \to \infty$ results in a '''DSB&ndash;AM suppressed carrier'''. Also for this you absolutely need the coherent demodulation.
+
::It is a '''DSB&ndash;AM without carrier''' and a synchronous demodulation is required. The equivalent lowpass signal $x_{\rm TP}(t)$ is on the real axis, but not only in the right half-plane. Thus, the phase function $\phi(t) \in \{ 0, \ \pm 180^\circ\}$, also applies here, which means that ''Envelope Demodulation'' is not applicable.
  
  
 
{{BlaueBox|TEXT=
 
{{BlaueBox|TEXT=
'''(7)''' &nbsp; &nbsp; Now applies &nbsp; $\text{Red:} \hspace{0.15cm} A_{\rm T} = 1\ \text{V}, \ f_{\rm T} = 100 \ \text{kHz}, \ \varphi_{\rm T} = 0^\circ$, &nbsp;  $\text{Green:} \hspace{0.15cm} A_{\rm U} = 0$, &nbsp;  $\text{Blue:} \hspace{0.15cm} A_{\rm O} = 0.8\ \text{V}, \ f_{\rm O} = 120 \ \text{kHz}, \ \varphi_{\rm O} = 90^\circ$.
+
'''(7)''' &nbsp; Now let &nbsp; $\text{Red:} \hspace{0.15cm} A_{\rm T} = 1\ \text{V}, f_{\rm T} = 100 \ \text{kHz}, \varphi_{\rm T} = 0^\circ$, &nbsp;  $\text{Green:} \hspace{0.15cm} A_{\rm U} = 0, \ f_{\rm U} = 80 \ \text{kHz},  \varphi_{\rm U} = -90^\circ$, &nbsp;  $\text{Blue:} \hspace{0.15cm} A_{\rm O} = 0.8\ \text{V}, f_{\rm O} = 120 \ \text{kHz}, \varphi_{\rm O} = 90^\circ$.
 
 
:Which constellation is described here? What changes with $A_{\rm U} = 0.8\ \text{V}$ und $A_{\rm O} = 0$?}}
 
 
 
::In both cases, it is a [[Modulationsverfahren/Einseitenbandmodulation|Single sideband]] '''(ESB&ndash;AM)''' with the modulation degree $\mu = 0.8$ (in ESB we denote the degree of modulation with $\mu$ instead $m$). he carrier signal is cosinusoidal and the message signal is sinusoidal.
 
  
:: $A_{\rm O} = 0.8\ \text{V}$, $A_{\rm U} = 0$ is an OSB modulation. The green pointer is missing and the blue pointer rotates faster compared to the red carrier.
+
:Which constellation is described here? Which characteristics of this procedure can be recognized from the graphic?}}
  
:: $A_{\rm U} = 0.8\ \text{V}$, $A_{\rm O} = 0$ is a USB modulation. The blue pointer is missing and the green pointer rotates slower compared to the red carrier.
+
::It is a [[Modulationsverfahren/Einseitenbandmodulation|single-sideband modulation]] '''(SSB&ndash;AM)''', more specifically an '''OSB&ndash;AM''': the red carrier is fixed, the green pointer missing and the blue pointer (OSB) turns counterclockwise. The degree of modulation is $\mu = 0.8$ (in the case of SSB we denote the degree of modulation with $\mu$ instead of $m$). The carrier signal is cosinusoidal and the message signal sinusoidal.<br>The locus is a circle. $x_{\rm TP}(t)$ moves in a mathematically positive direction. Because of $\phi(t) \ne \text{const.}$ the envelope demodulation is not applicable here: &nbsp;This can be seen by the fact that the envelope $a(t)$ is not cosinusoidal. Rather, the lower half-wave is sharper than the upper one &nbsp; &rArr; &nbsp; strong linear distortions.
  
  
 
{{BlaueBox|TEXT=
 
{{BlaueBox|TEXT=
'''(8)''' &nbsp; Now applies &nbsp; $\text{Red:} \hspace{0.05cm} A_{\rm T} = 1\ \text{V}, \ f_{\rm T} = 100 \ \text{kHz}, \ \varphi_{\rm T} = 0^\circ$, &nbsp;  $\text{Green:} \hspace{0.05cm} A_{\rm U} = 0.4\ \text{V}, \ f_{\rm U} = 80 \ \text{kHz}, \ \varphi_{\rm U} = -90^\circ$,  &nbsp;  $\text{Blue:} \hspace{0.05cm} A_{\rm O} = 0.2\ \text{V}, \ f_{\rm O} = 120 \ \text{kHz}, \ \varphi_{\rm O} = +90^\circ$.
+
'''(8)''' &nbsp; The parameters are still valid according to '''(7)''' with the exception of $A_{\rm O}= 0$ and $A_{\rm U}= 0.8 \text{ V}$. What differences arise opposite '''(7)'''?}}
  
:Which constellation could be described here? Which figure is given for the equivalent lowpass&ndash;signal $x_{\rm TP}(t)$? &nbsp; &rArr; &nbsp; &bdquo;locus&rdquo;?}}
+
::Now it is a '''LSB&ndash;AM''': The red carrier is fixed, the blue pointer is missing and the green pointer (LSB) rotates clockwise. All other statements of '''(7)''' apply here as well.
  
::It could be a ZSB&ndash;AM of a sinusoidal signal with cosinusoidal carrier and modulation degree $m=0.8$, in which the upper sideband is attenuated by a factor of 2. The equivalent lowpass&ndash;signal $x_{\rm TP}(t)$ has an elliptical course in the complex plane.
 
  
 +
{{BlaueBox|TEXT=
 +
'''(9)''' &nbsp; The parameters according to '''(7)''' are still valid with the exception of $A_{\rm O} = 0.2 \text{ V} \ne A_{\rm U} = 0.4 \text{ V} $. What are the differences from '''(7)'''?}}
  
 +
::The locus $x_{\rm TP}(t)$ is not a horizontal straight line, but an ellipse with the real part between $0.4 \text{ V}$ and $1.6 \text{ V}$ and the imaginary part in the range $\pm 0.2  \text{ V}$. Because of $\phi(t) \ne \text{const.}$ , Envelope demodulation would lead to non-linear distortions here too.<br> The constellation simulated here describes the situation of  '''(4)''', namely a DSB&ndash;AM with modulation degree $m = 0.8$, where the upper sideband is reduced to $50\%$ due to channel attenuation.
  
 
==Applet Manual==
 
==Applet Manual==
<br>
+
[[Datei:Ortskurve_abzug3.png|right]]
[[Datei:Zeigerdiagramm_abzug.png|right]]
+
* The red parameters $(A_{\rm T}, \ f_{\rm T}, \ \varphi_{\rm T})$  and the red pointer mark the ''Carrier'' <br>(German: '''T'''räger).
 +
* The green parameters $(A_{\rm U}, \ f_{\rm U} < f_{\rm T}, \ \varphi_{\rm U})$  mark the ''Lower sideband'' <br>(German: '''U'''ntere Seitenband).
 +
* The blue parameters $(A_{\rm O}, \ f_{\rm O} > f_{\rm T}, \ \varphi_{\rm O})$  mark the '' Upper sideband'' <br>(German: '''O'''bere Seitenband).
 +
* The red pointer does not turn.
 +
* The green pointer rotates in a mathematically negative direction (clockwise).
 +
* The blue pointer turns counterclockwise.
  
* The red parameters $(A_{\rm T}, \ f_{\rm T}, \ \varphi_{\rm T})$  and the red pointer marks the '''T'''räger(wearer).
 
* The green parameters $(A_{\rm U}, \ f_{\rm U} < f_{\rm T}, \ \varphi_{\rm U})$ marks the '''U'''ntere Seitenband(Lower sideband).
 
* The blue parameters $(A_{\rm O}, \ f_{\rm O} > f_{\rm T}, \ \varphi_{\rm O})$  marks the '''O'''bere Seitenband(upper sideband).
 
*All hands rotate in a mathematically positive direction (counterclockwise).
 
  
<br><br><br><br><br><br><br><br>
+
<u>Meaning of the letters in the adjacent graphic:</u>
Meaning of the letters in the adjacent graphic:
 
  
&nbsp; &nbsp; '''(A)''' &nbsp; &nbsp; Graphic field for the analytic signal $x_{\rm +}(t)$
+
&nbsp; &nbsp; '''(A)''' &nbsp; &nbsp; Plot of the equivalent lowpass signal $x_{\rm TP}(t)$
  
&nbsp; &nbsp; '''(B)''' &nbsp; &nbsp; Graphic field for the physical signal $x(t)$
+
&nbsp; &nbsp; '''(B)''' &nbsp; &nbsp; Plot of the physical signal $x(t)$
  
&nbsp; &nbsp; '''(C)''' &nbsp; &nbsp; Parameter input via slider: amplitudes, frequencies, phase values
+
&nbsp; &nbsp; '''(C)''' &nbsp; &nbsp; Parameter input via slider: &nbsp; amplitudes, frequencies, phase values
  
 
&nbsp; &nbsp; '''(D)''' &nbsp; &nbsp; Control elements: &nbsp; Start &ndash; Step &ndash; Pause/Continue &ndash; Reset
 
&nbsp; &nbsp; '''(D)''' &nbsp; &nbsp; Control elements: &nbsp; Start &ndash; Step &ndash; Pause/Continue &ndash; Reset
  
&nbsp; &nbsp; '''(E)''' &nbsp; &nbsp; Speed of animation: &nbsp; &bdquo;Speed&rdquo; &nbsp; &rArr; &nbsp; Value: 1, 2 oder 3
+
&nbsp; &nbsp; '''(E)''' &nbsp; &nbsp; Speed of animation: &nbsp; &bdquo;Speed&rdquo; &nbsp; &rArr; &nbsp; Values: 1, 2 oder 3
 +
 
 +
&nbsp; &nbsp; '''(F)''' &nbsp; &nbsp; &bdquo;Trace&rdquo; &nbsp; &rArr; &nbsp;  On or Off, trace of equivalent lowpass signal &nbsp; $x_{\rm TP}(t)$
  
&nbsp; &nbsp; '''(F)''' &nbsp; &nbsp; &bdquo;Trace&rdquo; &nbsp; &rArr; &nbsp; On or Off, trace of complex signal values $x_{\rm +}(t)$
+
&nbsp; &nbsp; '''(G)''' &nbsp; &nbsp; Numerical output: &nbsp; time $t$, the signal values &nbsp;${\rm Re}[x_{\rm TP}(t)]$ &nbsp;and&nbsp; ${\rm Im}[x_{\rm TP}(t)]$,
  
&nbsp; &nbsp; '''(G)''' &nbsp; &nbsp; Numeric output of the time $t$ and the signal values &nbsp;${\rm Re}[x_{\rm +}(t)] = x(t)$&nbsp; and &nbsp;${\rm Im}[x_{\rm +}(t)]$
+
$\text{}\hspace{4.2cm}$ &nbsp; envelope $a(t) = |x_{\rm TP}(t)|$ &nbsp;and&nbsp; phase $\phi(t) = {\rm arc} \ x_{\rm TP}(t)$
  
 
&nbsp; &nbsp; '''(H)''' &nbsp; &nbsp; Variations for the graphical representation
 
&nbsp; &nbsp; '''(H)''' &nbsp; &nbsp; Variations for the graphical representation
Zeile 290: Zeile 247:
 
$\hspace{1.5cm}$Zoom&ndash;Functions &bdquo;$+$&rdquo; (Enlarge), &bdquo;$-$&rdquo; (Decrease) and $\rm o$ (Reset to default)
 
$\hspace{1.5cm}$Zoom&ndash;Functions &bdquo;$+$&rdquo; (Enlarge), &bdquo;$-$&rdquo; (Decrease) and $\rm o$ (Reset to default)
  
$\hspace{1.5cm}$Move with &bdquo;$\leftarrow$&rdquo; (Section to the left, ordinate to the right),  &bdquo;$\uparrow$&rdquo; &bdquo;$\downarrow$&rdquo; and &bdquo;$\rightarrow$&rdquo;
+
$\hspace{1.5cm}$Move with &bdquo;$\leftarrow$&rdquo; (Section to the left, ordinate to the right),  &bdquo;$\uparrow$&rdquo; &bdquo;$\downarrow$&rdquo; &bdquo;$\rightarrow$&rdquo;
  
&nbsp; &nbsp; '''(I)''' &nbsp; &nbsp; Range for the experiment:&nbsp; Task selection and task
+
&nbsp; &nbsp; '''(I)''' &nbsp; &nbsp; Experiment section: &nbsp; Task selection and task
  
&nbsp; &nbsp; '''(J)''' &nbsp; &nbsp; Range for the experiment:&nbsp; solution
+
&nbsp; &nbsp; '''(J)''' &nbsp; &nbsp; Experiment section:&nbsp; solution
 
<br clear=all>
 
<br clear=all>
  
 
==About the Authors==
 
==About the Authors==
This interactive calculation was designed and realized at the  [http://www.lnt.ei.tum.de/startseite Lehrstuhl für Nachrichtentechnik] of the  [https://www.tum.de/ Technischen Universität München] .
+
This interactive calculation was designed and realized at the  [http://www.lnt.ei.tum.de/startseite Lehrstuhl für Nachrichtentechnik] of the  [https://www.tum.de/ Technical University of Munich] .
 
*The original version was created in 2005 by [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_Studierende#Ji_Li_.28Bachelorarbeit_EI_2003.2C_Diplomarbeit_EI_2005.29|Ji Li]] as part of her Diploma thesis using  &bdquo;FlashMX&ndash;Actionscript&rdquo; (Supervisor: [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_Mitarbeiter_und_Dozenten#Prof._Dr.-Ing._habil._G.C3.BCnter_S.C3.B6der_.28am_LNT_seit_1974.29|Günter Söder]]).
 
*The original version was created in 2005 by [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_Studierende#Ji_Li_.28Bachelorarbeit_EI_2003.2C_Diplomarbeit_EI_2005.29|Ji Li]] as part of her Diploma thesis using  &bdquo;FlashMX&ndash;Actionscript&rdquo; (Supervisor: [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_Mitarbeiter_und_Dozenten#Prof._Dr.-Ing._habil._G.C3.BCnter_S.C3.B6der_.28am_LNT_seit_1974.29|Günter Söder]]).
 
*In 2018 this Applet was redesigned and updated to &bdquo;HTML5&rdquo; by [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_Studierende#Xiaohan_Liu_.28Bachelorarbeit_2018.29|Xiaohan Liu]] as part of her Bachelor's thesis (Supervisor: [[Biografien_und_Bibliografien/Beteiligte_der_Professur_Leitungsgebundene_%C3%9Cbertragungstechnik#Tasn.C3.A1d_Kernetzky.2C_M.Sc._.28bei_L.C3.9CT_seit_2014.29|Tasnád Kernetzky]]).
 
*In 2018 this Applet was redesigned and updated to &bdquo;HTML5&rdquo; by [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_Studierende#Xiaohan_Liu_.28Bachelorarbeit_2018.29|Xiaohan Liu]] as part of her Bachelor's thesis (Supervisor: [[Biografien_und_Bibliografien/Beteiligte_der_Professur_Leitungsgebundene_%C3%9Cbertragungstechnik#Tasn.C3.A1d_Kernetzky.2C_M.Sc._.28bei_L.C3.9CT_seit_2014.29|Tasnád Kernetzky]]).
Zeile 304: Zeile 261:
 
==Once again: Open Applet in new Tab==
 
==Once again: Open Applet in new Tab==
  
{{LntAppletLink|analPhysSignal}}
+
{{LntAppletLinkEn|physAnLPSignal_en}}
  
 
[[Category:Applets|^Verzerrungen^]]
 
[[Category:Applets|^Verzerrungen^]]

Version vom 9. Juni 2020, 22:04 Uhr

Open Applet in new Tab

Applet Description


This applet shows the relationship between the physical bandpass signal $x(t)$ and the associated equivalent lowpass signal $x_{\rm TP}(t)$. It is assumed that the bandpass signal $x(t)$ has a frequency-discrete spectrum $X(f)$:

$$x(t) = x_{\rm T}(t) + x_{\rm O}(t)+ x_{\rm U}(t) = A_{\rm T}\cdot \cos\left(2\pi f_{\rm T}\cdot t- \varphi_{\rm T}\right)+A_{\rm O}\cdot \cos\left(2\pi f_{\rm O}\cdot t- \varphi_{\rm O}\right) + A_{\rm U}\cdot \cos\left(2\pi f_{\rm U}\cdot t- \varphi_{\rm U}\right). $$

The physical signal $x(t)$ is thus composed of three harmonic oscillations, a constellation that can be found, for example, in the Double-sideband Amplitude Modulation

  • of the message signal $x_{\rm N}(t) = A_{\rm N}\cdot \cos\left(2\pi f_{\rm N}\cdot t- \varphi_{\rm N}\right)$   ⇒   in German:   Nachrichtensignal
  • with the carrier signal $x_{\rm T}(t) = A_{\rm T}\cdot \cos\left(2\pi f_{\rm T}\cdot t - \varphi_{\rm T}\right)$   ⇒   in German:   Trägersignal.


The nomenclature is also adapted to this case:

  • $x_{\rm O}(t)$ denotes the „upper sideband”   (in German:   Oberes Seitenband) with the amplitude $A_{\rm O}= A_{\rm N}/2$, the frequency $f_{\rm O} = f_{\rm T} + f_{\rm N}$ and the phase $\varphi_{\rm O} = \varphi_{\rm T} + \varphi_{\rm N}$.
  • Similarly, for the „lower sideband”   (in German:   Unteres Seitenband) $x_{\rm U}(t)$ with $f_{\rm U} = f_{\rm T} - f_{\rm N}$, $A_{\rm U}= A_{\rm O}$ and $\varphi_{\rm U} = -\varphi_{\rm O}$.


The associated equivalent lowpass–signal is $f_{\rm O}\hspace{0.01cm}' = f_{\rm O}- f_{\rm T} > 0$,   $f_{\rm U}\hspace{0.01cm}' = f_{\rm U}- f_{\rm T} < 0$  and  $f_{\rm T}\hspace{0.01cm}' = 0$:

$$x_{\rm TP}(t) = x_\text{TP, T}(t) + x_\text{TP, O}(t) + x_\text{TP, U}(t) = A_{\rm T}\cdot {\rm e}^{-{\rm j} \varphi_{\rm T} } \hspace{0.1cm}+ \hspace{0.1cm} A_{\rm O}\cdot {\rm e}^{-{\rm j} \varphi_{\rm O} } \cdot {\rm e}^{ {\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}2\pi \hspace{0.05cm}\cdot \hspace{0.05cm}f_{\rm O}\hspace{0.01cm}'\hspace{0.05cm}\cdot \hspace{0.05cm}t}\hspace{0.1cm}+ \hspace{0.1cm} A_{\rm U}\cdot {\rm e}^{-{\rm j} \varphi_{\rm U} } \cdot {\rm e}^{ {\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}2\pi \hspace{0.05cm}\cdot \hspace{0.05cm}f_{\rm U}\hspace{0.01cm}'\hspace{0.05cm}\cdot \hspace{0.05cm}t} . $$
Equivalent low-pass signal currently $t=0$ for cosinusoidal carrier   ⇒   $\varphi_{\rm T} = 0$

The program shows $x_{\rm TP}(t)$ as the vectorial sum of three rotation pointers as a violet dot (see figure for start time $t=0$ and cosinusoidal carrier):

  • The (red) pointer of the carrier $x_\text{TP, T}(t)$ with the length $A_{\rm T}$ and the zero phase position $\varphi_{\rm T}=0$ is fixed in the complex plane. So it applies to all times $t$:   $x_{\rm TP}(t)= A_{\rm T}\cdot {\rm e}^{-{\rm j} \varphi_{\rm T} }$.
  • The (blue) pointer of the upper sideband $x_\text{TP, O}(t)$ with the length $A_{\rm O}$ and the zero phase position $\varphi_{\rm O}$ rotates at the angular velocity $2\pi \hspace{0.05cm}\cdot \hspace{0.05cm}f_{\rm O}\hspace{0.01cm}'$ in mathematically positive direction (one revolution in time $1/f_{\rm O}\hspace{0.01cm}')$.
  • The (green) pointer of the lower sideband $x_{\rm U+}(t)$ with the length $A_{\rm U}$ and the zero phase position $\varphi_{\rm U}$ rotates at the angular velocity $2\pi \hspace{0.05cm}\cdot \hspace{0.05cm}f_{\rm U}\hspace{0.01cm}'$, because of $f_{\rm U}\hspace{0.01cm}'<0$ counterclockwise.
  • With $f_{\rm U}\hspace{0.01cm}' = -f_{\rm O}\hspace{0.01cm}'$ the blue and green pointers will spin at the same speed but in different directions. Also, if $A_{\rm O} = A_{\rm U}$ and $\varphi_{\rm U} = -\varphi_{\rm O}$, then $x_{\rm TP}(t)$ moves on a straight line with a incline of $\varphi_{\rm T}$.


Note:   In the figure $\varphi_{\rm O} = +30^\circ$. From this follows for the start time $t=0$ the angle of the upper sideband (OSB, blue pointer) with respect to the coordinate system:   $\phi_{\rm O} = -\varphi_{\rm O} = -30^\circ$. Likewise, the zero phase position $\varphi_{\rm U} = -30^\circ$ of the lower sideband (USB, green pointer) follows for the phase angle to be considered in the complex plane:   $\phi_{\rm U} = +30^\circ$.


The temporal process of $x_{\rm TP}(t)$ is also referred to below as „locus”. The relationship between $x_{\rm TP}(t)$ and the physical bandpass signal $x(t)$ is given in the section and the associated analytic signal is $x_+(t)$ :

$$x_{\rm TP}(t) = x_{\rm +}(t)\cdot {\rm e}^{-{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}2 \pi \cdot f_{\rm T}\cdot \hspace{0.05cm}t},$$
$$x_{\rm +}(t) = x_{\rm TP}(t)\cdot {\rm e}^{+{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}2 \pi \cdot f_{\rm T}\cdot \hspace{0.05cm}t}.$$



German description

Theoretical Background


Description of Bandpass Signals

bandpass spectrum $X(f)$

We consider bandpass signals $x(t)$ with the property that their spectra $X(f)$ are not in the range around the frequency $f=0$, but around a carrier frequency $f_{\rm T}$. In most cases it can also be assumed that the bandwidth is $B \ll f_{\rm T}$.

The figure shows such a bandpass spectrum $X(f)$. Assuming that the associated $x(t)$ is a physical signal and thus real, the spectral function $X(f)$ has a symmetry with respect to the frequency $f = 0$, if $x(t)$ is an even function   ⇒   $x(-t)=x(t)$, $X(f)$ is real and even.


Beside the physical signal $x(t)\ \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \ X(f)$, one can also use the following descriptions of bandpass signals:

  • the analytic signal $x_+(t)\ \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \ X_+(f)$, see applet Physical Signal & Analytic Signal,
  • the equivalent lowpass signal $x_{\rm TP}(t)\ \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \ X_{\rm TP}(f)$, see next page



Spectral Functions of the Analytic and the Equivalent Lowpass Signal

The analytic signal $x_+(t)$ belonging to the physical signal $x(t)$ is the time function whose spectrum fulfills the following property:

spectral functions $X(f)$, $X_+(f)$ and $X_{\rm TP}(f)$
$$X_+(f)=\big[1+{\rm sign}(f)\big] \cdot X(f) = \left\{ {2 \cdot X(f) \; \hspace{0.2cm}\rm for\hspace{0.2cm} {\it f} > 0, \atop {\,\,\,\, \rm 0 \; \hspace{0.9cm}\rm for\hspace{0.2cm} {\it f} < 0.} }\right.$$

The Signum function is for positive values of $f$ equal to $+1$ and for negative $f$ values equal to $-1$.

  • The (double-sided) limit returns $\sign(0) = 0$.
  • The index „+” should make it clear that $X_+(f)$ only has parts at positive frequencies.


From the graph you can see the calculation rule for $X_+(f)$:   The actual bandpass spectrum $X(f)$ becomes

  • doubled at the positive frequencies, and
  • set to zero at the negative frequencies.


Due to the asymmetry of $X_+(f)$ with respect to the frequency $f = 0$, it can already be said that the time function $x_+(t)$ except for a trivial special case $x_+(t)= 0 \ \ \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\,\ \ X_+(f)= 0$ is always complex.


The spectrum $X_{\rm TP}(f)$ of the equivalent lowpass signal is obtained by shifting $X_+(f)$ to the left by the carrier frequency $f_{\rm T}$:

$$X_{\rm TP}(f)= X_+(f+f_{\rm T}).$$

In the time domain this operation corresponds to the multiplication of $x_{\rm +}(t)$ with the complex exponential function with negative exponent:

$$x_{\rm TP}(t) = x_{\rm +}(t)\cdot {\rm e}^{-{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}2 \pi \cdot f_{\rm T}\cdot \hspace{0.05cm}t}.$$

It can be seen that $x_{\rm TP}(t)$ is generally complex. But if $X_+(f)$ is symmetric about the carrier frequency $f_{\rm T}$, $X_{\rm TP}(f)$ is symmetric about the frequency $f=0$ and there is accordingly a real time function $x_{\rm TP}(t)$.

$x_{\rm TP}(t)$ Representation of a Sum of Three Harmonic Oscillations

In our applet, we always assume a set of three rotating pointers. The physical signal is:

$$x(t) = x_{\rm T}(t) + x_{\rm O}(t) + x_{\rm U}(t) = A_{\rm T}\cdot \cos\left(2\pi f_{\rm T}\cdot t- \varphi_{\rm T}\right)+A_{\rm O}\cdot \cos\left(2\pi f_{\rm O}\cdot t- \varphi_{\rm O}\right) + A_{\rm U}\cdot \cos\left(2\pi f_{\rm U}\cdot t- \varphi_{\rm U}\right). $$
  • Each of the three harmonic oscillations $x_{\rm T}(t)$, $x_{\rm U}(t)$ and $x_{\rm O}(t)$ is represented by an amplitude $(A)$, a frequency $(f)$ and a phase value $(\varphi)$.
  • The indices are based on the modulation method double sideband amplitude modulation. „T” stands for „carrier”, „U” for „lower sideband” and „O” for „upper Sideband”. Similarly, $f_{\rm U} < f_{\rm T}$ and $f_{\rm O} > f_{\rm T}$. There are no restrictions for the amplitudes and phases.


The associated equivalent low-pass signal is with $f_{\rm O}\hspace{0.01cm}' = f_{\rm O}- f_{\rm T} > 0$,   $f_{\rm U}\hspace{0.01cm}' = f_{\rm U}- f_{\rm T} < 0$  and  $f_{\rm T}\hspace{0.01cm}' = 0$:

$$x_{\rm TP}(t) = x_\text{TP, T}(t) + x_\text{TP, O}(t) + x_\text{TP, U}(t) = A_{\rm T}\cdot {\rm e}^{-{\rm j} \varphi_{\rm T} } \hspace{0.1cm}+ \hspace{0.1cm} A_{\rm O}\cdot {\rm e}^{-{\rm j} \varphi_{\rm O} } \cdot {\rm e}^{ {\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}2\pi \hspace{0.05cm}\cdot \hspace{0.05cm}f_{\rm O}\hspace{0.01cm}'\hspace{0.05cm}\cdot \hspace{0.05cm}t}\hspace{0.1cm}+ \hspace{0.1cm} A_{\rm U}\cdot {\rm e}^{-{\rm j} \varphi_{\rm U} } \cdot {\rm e}^{ {\rm j}\hspace{0.05cm}\cdot \hspace{0.05cm}2\pi \hspace{0.05cm}\cdot \hspace{0.05cm}f_{\rm U}\hspace{0.01cm}'\hspace{0.05cm}\cdot \hspace{0.05cm}t} . $$

$\text{Example 1:}$  The constellation given here results, for example, in the double sideband amplitude modulation of the message signal $x_{\rm N}(t) = A_{\rm N}\cdot \cos\left(2\pi f_{\rm N}\cdot t- \varphi_{\rm N}\right)$ with the carrier signal $x_{\rm T}(t) = A_{\rm T}\cdot \cos\left(2\pi f_{\rm T}\cdot t - \varphi_{\rm T}\right)$. This is discussed frequently in the exercises.

Spectrum $X_{\rm TP}(f)$ of the equivalent low–pass signal for different phase constellations

There are some limitations to the program parameters in this approach:

  • The frequencies are always $f\hspace{0.05cm}'_{\rm O} = f_{\rm N}$ and $f\hspace{0.05cm}'_{\rm U} = -f_{\rm N}$.
  • Without distortion, the amplitude of the sidebands is $A_{\rm O}= A_{\rm U}= A_{\rm N}/2$.
  • The respective phase relationships can be seen in the following graphic.



Representation of the Equivalent Lowpass Signal by Magnitude and Phase

The generally complex equivalent lowpass signal

$$x_{\rm TP}(t) = a(t) \cdot {\rm e}^{ {\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm} \phi(t) }$$

can be split into a magnitude function $a(t)$ and a phase function $\phi(t)$ according to the equation given here, where:

$$a(t) = \vert x_{\rm TP}(t)\vert = \sqrt{ {\rm Re}^2\big [x_{\rm TP}(t)\big ] + {\rm Im}^2\big [x_{\rm TP}(t)\big ] }\hspace{0.05cm},$$
$$\phi(t) = \text{arc }x_{\rm TP}(t) = \arctan \frac{{\rm Im}\big [x_{\rm TP}(t)\big ]}{{\rm Re}\big [x_{\rm TP}(t)\big ]}.$$

The reason for this is that a bandpass signal $x(t)$ is usually described by the equivalent lowpass signal $x_{\rm TP}(t)$ that the functions $a(t)$ and $\phi(t)$ are interpretable in both representations:

  • The amount $a(t)$ of the equivalent lowpass signal $x_{\rm TP}(t)$ indicates the (time-dependent) envelope of $x(t)$.
  • The phase $\phi(t)$ of $x_{\rm TP}(t)$ denotes the location of the zero crossings of $x(t)$, where:
–   For $\phi(t)>0$ the zero crossing is earlier than its nominal position   ⇒   the signal is leading here.
–  When $\phi(t)<0$, the zero crossing is later than its target position   ⇒   the signal is trailing here.


$\text{Example 2:}$  The graph is intended to illustrate this relationship, assuming $A_{\rm U} > A_{\rm O}$   ⇒   the green pointer (for the lower sideband) is longer than the blue pointer (upper sideband). This is a snapshot at time $t_0$:

bandpass spectrum $X(f)$
  • For these system parameters, the top of the pointer cluster $x_{\rm TP}(t)$ – that is, the geometric sum of red, blue and green pointers – on an ellipse.
  • The amount $a(t_0) = \vert x_{\rm TP}(t_0) \vert$ is drawn in black in the left-hand diagram and the phase value $\phi(t_0) = \text{arc }x_{\rm TP}(t_0) > 0$ is indicated in brown color.
  • In the graph on the right, the amount $a(t_0) = \vert x_{\rm TP}(t_0) \vert$ of the equivalent low-pass signal indicates the envelope of the physical signal $x(t)$.
  • At $\phi(t) \equiv 0$, all zero crossings of $x(t)$ would occur at equidistant intervals. Because of $\phi(t_0) > 0$, the signal is leading at the time $t_0$, that is: the zero crossings come earlier than the grid dictates.

Exercises

Exercises verzerrungen.png
  • First select the task number.
  • A task description is displayed.
  • Parameter values are adjusted.
  • Solution after pressing „Hide solition”.


The number „0” will reset the program and output a text with the further explanation of the applet.


In the following, $\rm Green$ denotes the lower sideband   ⇒   $\big (A_{\rm U}, f_{\rm U}, \varphi_{\rm U}\big )$,   $\rm Red$ the carrier   ⇒   $\big (A_{\rm T}, f_{\rm T}, \varphi_{\rm T}\big )$ and $\rm Blue$ the upper sideband   ⇒   $\big (A_{\rm O}, f_{\rm O}, \varphi_{\rm O}\big )$.

(1)   Let   $\text{Red:} \hspace{0.15cm} A_{\rm T} = 1\ \text{V}, f_{\rm T} = 100 \ \text{kHz}, \varphi_{\rm T} = 0^\circ$,   $\text{Green:} \hspace{0.15cm} A_{\rm U} = 0.4 \text{V}, \ f_{\rm U} = 80 \ \text{kHz}, \varphi_{\rm U} = -90^\circ$,   $\text{Blue:} \hspace{0.15cm} A_{\rm O} = 0.4\ \text{V}, f_{\rm O} = 120 \ \text{kHz}, \varphi_{\rm O} = 90^\circ$.

Consider and interpret the equivalent lowpass signal $x_{\rm TP}(t)$ and the physical signal $x(t)$. Which period $T_0$ recognizable?
 The equivalent lowpass signal $x_{\rm TP}(t)$ takes from $x_{\rm TP}(t=0)=1\ \text{V}$ on the real axis values between $0.2\ \text{V}$ and $1.8\ \text{V}$   ⇒   phase $\phi(t) \equiv 0$.
 The amount $|x_{\rm TP}(t)|$ indicates the envelope $a(t)$ of the physical signal $x(t)$. It holds $A_{\rm N} = 0.8\ \text{V}$ and $f_{\rm N} = 20\ \text{kHz}$:   $a(t) = A_{\rm T}+ A_{\rm N} \cdot \sin(2\pi\cdot f_{\rm N} \cdot t)$.
 Both $x_{\rm TP}(t)$ and $x(t)$ are periodically with the period $T_0 = 1/f_{\rm N} = 50\ \rm µ s$.


(2)   How do the ratios change to (1) with $f_{\rm U} = 99 \ \text{kHz}$ and $f_{\rm O} = 101 \ \text{kHz}$ ? How could $x(t)$ have arisen?

 For the envelope $a(t)$ of the signal $x(t)$ we still have $a(t) = A_{\rm T}+ A_{\rm N} \cdot \sin(2\pi\cdot f_{\rm N} \cdot t)$, but now $f_{\rm N} = 1\ \text{kHz}$. Even though it can not be recognized:
 $x_{\rm TP}(t)$ and $x(t)$ are still periodically:   $T_0 = 1\ \rm ms$. Example: Double sideband Amplitude modulation (DSB–AM) of a sine signal with cosine carrier.


(3)   Which settings have to be changed from (2) in order to arrive at the DSB–AM of a cosine signal with sine carrier. What changes over (2)?

The carrier phase must be changed to $\varphi_{\rm T} = 90^\circ$   ⇒   sine carrier. Similarly, $\varphi_{\rm O} =\varphi_{\rm U} =\varphi_{\rm T} = 90^\circ$ must be set   ⇒   cosinusoidal message
 The locus now lies on the imaginary axis  ⇒   $\phi(t) \equiv -90^\circ$. At the beginning $x_{\rm TP}(t=0)= - {\rm j} \cdot 1.8 \ \text{V}$.


(4)   Now let   $\text{Red:} \hspace{0.15cm} A_{\rm T} = 1\ \text{V}, \ f_{\rm T} = 100 \ \text{kHz}, \ \varphi_{\rm T} = 0^\circ$,   $\text{Green:} \hspace{0.15cm} A_{\rm U} = 0.4 \text{V}, \ f_{\rm U} = 80 \ \text{kHz}, \ \varphi_{\rm U} = 0^\circ$,   $\text{Blue:} \hspace{0.15cm} A_{\rm O} = 0.4\ \text{V}, \ f_{\rm O} = 120 \ \text{kHz}, \ \varphi_{\rm O} = 0^\circ$.

What are the characteristics of this system „DSB–AM, where the message signal and carrier are respectively cosinusoidal”? What is the degree of modulation $m$?
 The equivalent lowpass signal $x_{\rm TP}(t)$ takes from $x_{\rm TP}(t=0)=1.8\ \text{V}$ on the real axis values between $0.2\ \text{V}$ and $1.8\ \text{V}$   ⇒   phase $\phi(t) \equiv 0$.
 Except for the start state $x_{\rm TP}(t=0)$ same behavior as at the setting (1). The degree of modulation is $m = 0.8$.


(5)   The parameters are still valid according to (4) with the exception of $A_{\rm T}= 0.6 \text{V}$. What is the degree of modulation $m$? What are the consequences?

 There is now a DSB–AM with modulation degree $m = 1.333$. For $m > 1$, the simpler Envelope Demodulation is not applicable, since the phase function $\phi(t) \in \{ 0, \ \pm 180^\circ\}$ is no more constant and the envelope $a(t)$ no more matches the message signal. Rather, the complex Synchronous Demodulation must be used. Envelope detection would produce nonlinear distortions.


(6)   The parameters are still valid according to (4) or (5) with the exception from $A_{\rm T}= 0$ on   ⇒   $m \to \infty$. Which modulation method is described in this way?

It is a DSB–AM without carrier and a synchronous demodulation is required. The equivalent lowpass signal $x_{\rm TP}(t)$ is on the real axis, but not only in the right half-plane. Thus, the phase function $\phi(t) \in \{ 0, \ \pm 180^\circ\}$, also applies here, which means that Envelope Demodulation is not applicable.


(7)   Now let   $\text{Red:} \hspace{0.15cm} A_{\rm T} = 1\ \text{V}, f_{\rm T} = 100 \ \text{kHz}, \varphi_{\rm T} = 0^\circ$,   $\text{Green:} \hspace{0.15cm} A_{\rm U} = 0, \ f_{\rm U} = 80 \ \text{kHz}, \varphi_{\rm U} = -90^\circ$,   $\text{Blue:} \hspace{0.15cm} A_{\rm O} = 0.8\ \text{V}, f_{\rm O} = 120 \ \text{kHz}, \varphi_{\rm O} = 90^\circ$.

Which constellation is described here? Which characteristics of this procedure can be recognized from the graphic?
It is a single-sideband modulation (SSB–AM), more specifically an OSB–AM: the red carrier is fixed, the green pointer missing and the blue pointer (OSB) turns counterclockwise. The degree of modulation is $\mu = 0.8$ (in the case of SSB we denote the degree of modulation with $\mu$ instead of $m$). The carrier signal is cosinusoidal and the message signal sinusoidal.
The locus is a circle. $x_{\rm TP}(t)$ moves in a mathematically positive direction. Because of $\phi(t) \ne \text{const.}$ the envelope demodulation is not applicable here:  This can be seen by the fact that the envelope $a(t)$ is not cosinusoidal. Rather, the lower half-wave is sharper than the upper one   ⇒   strong linear distortions.


(8)   The parameters are still valid according to (7) with the exception of $A_{\rm O}= 0$ and $A_{\rm U}= 0.8 \text{ V}$. What differences arise opposite (7)?

Now it is a LSB–AM: The red carrier is fixed, the blue pointer is missing and the green pointer (LSB) rotates clockwise. All other statements of (7) apply here as well.


(9)   The parameters according to (7) are still valid with the exception of $A_{\rm O} = 0.2 \text{ V} \ne A_{\rm U} = 0.4 \text{ V} $. What are the differences from (7)?

The locus $x_{\rm TP}(t)$ is not a horizontal straight line, but an ellipse with the real part between $0.4 \text{ V}$ and $1.6 \text{ V}$ and the imaginary part in the range $\pm 0.2 \text{ V}$. Because of $\phi(t) \ne \text{const.}$ , Envelope demodulation would lead to non-linear distortions here too.
The constellation simulated here describes the situation of (4), namely a DSB–AM with modulation degree $m = 0.8$, where the upper sideband is reduced to $50\%$ due to channel attenuation.

Applet Manual

Ortskurve abzug3.png
  • The red parameters $(A_{\rm T}, \ f_{\rm T}, \ \varphi_{\rm T})$ and the red pointer mark the Carrier
    (German: Träger).
  • The green parameters $(A_{\rm U}, \ f_{\rm U} < f_{\rm T}, \ \varphi_{\rm U})$ mark the Lower sideband
    (German: Untere Seitenband).
  • The blue parameters $(A_{\rm O}, \ f_{\rm O} > f_{\rm T}, \ \varphi_{\rm O})$ mark the Upper sideband
    (German: Obere Seitenband).
  • The red pointer does not turn.
  • The green pointer rotates in a mathematically negative direction (clockwise).
  • The blue pointer turns counterclockwise.


Meaning of the letters in the adjacent graphic:

    (A)     Plot of the equivalent lowpass signal $x_{\rm TP}(t)$

    (B)     Plot of the physical signal $x(t)$

    (C)     Parameter input via slider:   amplitudes, frequencies, phase values

    (D)     Control elements:   Start – Step – Pause/Continue – Reset

    (E)     Speed of animation:   „Speed”   ⇒   Values: 1, 2 oder 3

    (F)     „Trace”   ⇒   On or Off, trace of equivalent lowpass signal   $x_{\rm TP}(t)$

    (G)     Numerical output:   time $t$, the signal values  ${\rm Re}[x_{\rm TP}(t)]$  and  ${\rm Im}[x_{\rm TP}(t)]$,

$\text{}\hspace{4.2cm}$   envelope $a(t) = |x_{\rm TP}(t)|$  and  phase $\phi(t) = {\rm arc} \ x_{\rm TP}(t)$

    (H)     Variations for the graphical representation

$\hspace{1.5cm}$Zoom–Functions „$+$” (Enlarge), „$-$” (Decrease) and $\rm o$ (Reset to default)

$\hspace{1.5cm}$Move with „$\leftarrow$” (Section to the left, ordinate to the right), „$\uparrow$” „$\downarrow$” „$\rightarrow$”

    (I)     Experiment section:   Task selection and task

    (J)     Experiment section:  solution

About the Authors

This interactive calculation was designed and realized at the Lehrstuhl für Nachrichtentechnik of the Technical University of Munich .

  • The original version was created in 2005 by Ji Li as part of her Diploma thesis using „FlashMX–Actionscript” (Supervisor: Günter Söder).
  • In 2018 this Applet was redesigned and updated to „HTML5” by Xiaohan Liu as part of her Bachelor's thesis (Supervisor: Tasnád Kernetzky).

Once again: Open Applet in new Tab

Open Applet in new Tab