Applets:Linear Distortions of Periodic Signals: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
K (Textersetzung - „An_LNTwww_beteiligte_Mitarbeiter_und_Dozenten#Tasn.C3.A1d_Kernetzky.2C_M.Sc._.28am_LNT_seit_2014.29“ durch „Beteiligte_der_Professur_Leitungsgebundene_%C3%9Cbertragungstechnik#Tasn.C3.A1d_Kernetzky.2C_M.Sc._.28bei_L.C3.9CT_seit_2014.29“)
 
(46 dazwischenliegende Versionen von 4 Benutzern werden nicht angezeigt)
Zeile 1: Zeile 1:
{{LntAppletLink|verzerrungen|Open Applet in new Tab}}  
+
{{LntAppletLinkEn|linDistortions_en}}  
  
==Applet description==
+
==Applet Description==
 
<br>
 
<br>
This applet illustrates the effects of linear distortions(attenuation distortions and phase distortions) with
+
This applet illustrates the effects of linear distortions (attenuation distortions and phase distortions) with
[[Datei:Modell_version2.png|right|frame|Meanings of the signals used]]
+
[[Datei:Modell_version2.png|right|frame|Meanings of the used signals]]
 
*the input signal $x(t)$ &nbsp; &rArr; &nbsp; power $P_x$:
 
*the input signal $x(t)$ &nbsp; &rArr; &nbsp; power $P_x$:
 
:$$x(t) = x_1(t) + x_2(t) = A_1\cdot \cos\left(2\pi f_1\cdot t- \varphi_1\right)+A_2\cdot \cos\left(2\pi f_2\cdot t- \varphi_2\right), $$
 
:$$x(t) = x_1(t) + x_2(t) = A_1\cdot \cos\left(2\pi f_1\cdot t- \varphi_1\right)+A_2\cdot \cos\left(2\pi f_2\cdot t- \varphi_2\right), $$
 
*the output signal $y(t)$ &nbsp; &rArr; &nbsp; power $P_y$:
 
*the output signal $y(t)$ &nbsp; &rArr; &nbsp; power $P_y$:
 
:$$y(t) = \alpha_1 \cdot  x_1(t-\tau_1)  +  \alpha_2  \cdot  x_2(t-\tau_2),$$
 
:$$y(t) = \alpha_1 \cdot  x_1(t-\tau_1)  +  \alpha_2  \cdot  x_2(t-\tau_2),$$
*the matching output signal $z(t)$ &nbsp; &rArr; &nbsp; power $P_z$:
+
*the matched output signal $z(t)$ &nbsp; &rArr; &nbsp; power $P_z$:
 
:$$z(t) = k_{\rm M} \cdot  y(t-\tau_{\rm M})  +  \alpha_2  \cdot  x_2(t-\tau_2),$$
 
:$$z(t) = k_{\rm M} \cdot  y(t-\tau_{\rm M})  +  \alpha_2  \cdot  x_2(t-\tau_2),$$
 
*the difference signal &nbsp;  $\varepsilon(t) = z(t) - x(t)$ &nbsp; &rArr; &nbsp; power $P_\varepsilon$.  
 
*the difference signal &nbsp;  $\varepsilon(t) = z(t) - x(t)$ &nbsp; &rArr; &nbsp; power $P_\varepsilon$.  
  
  
'''Beginn Anpassen'''
+
The next block in the model above is ''Matching'': The output signal $y(t)$ is adjusted in amplitude and phase with equal quantities $k_{\rm M}$ and $\tau_{\rm M}$ for all frequencies which means that this is not a frequency-dependent equalization. Using the signal $z(t)$, one can differentiate between:
The next block in the above model is &bdquo;Matching&bdquo;: The output signal $y(t)$ is adjusted in amplitude and phase with uniform quantities $k_{\rm M}$ and $\tau_{\rm M}$ for all frequencies which means that this is not a frequency-dependent distortion. Using the signal $z(t)$, a differentiation can be made between:
 
 
*attenuation distortion and frequency&ndash;independant attenuation, as well as
 
*attenuation distortion and frequency&ndash;independant attenuation, as well as
*phase distortion and pure frequency&ndash;independant delay.
+
*phase distortion and frequency&ndash;independant delay.
  
  
The Distortion Power $P_{\rm D}$ is used to measure the strength of the linear distortion and is defined as:
+
The ''Distortion Power'' $P_{\rm D}$ is used to measure the strength of the linear distortion and is defined as:
 
:$$P_{\rm D} = \min_{k_{\rm M},  \ \tau_{\rm M}} P_\varepsilon.$$
 
:$$P_{\rm D} = \min_{k_{\rm M},  \ \tau_{\rm M}} P_\varepsilon.$$
  
'''Ende Anpassen'''
+
[[Applets:Lineare_Verzerrungen_periodischer_Signale|'''German description''']]
  
'''Beginn Änderungen im deutschen Text:'''
 
  
Als nächster Block im obigen Modell folgt das &bdquo;Matching&rdquo;:  Dabei wird das Ausgangssignal $y(t)$ mit für alle Frequenzen einheitlichen Größen  $k_{\rm M}$ und $\tau_{\rm M}$ in Amplitude bzw. Phase angepasst. Dies ist also keine frequenzabhängige Entzerrung. Anhand des Signals $z(t)$ kann unterschieden werden
+
==Theoretical Background==
*zwischen einer Dämpfungsverzerrung und einer frequenzunabhängigen Dämpfung, sowie
 
*zwischen einer Phasenverzerrung und einer für alle Frequenzen gleichen Laufzeit.
 
 
 
 
 
Als Maß für die Stärke der linearen Verzerrungen wird die Verzerrungsleistung (englisch: ''Distortion Power'') $P_{\rm D}$ verwendet. Für diese gilt:
 
:$$P_{\rm D} = \min_{k_{\rm M},  \ \tau_{\rm M}} P_\varepsilon.$$
 
'Ende Änderungen im deutschen Text:'''
 
 
 
==Theoretical background==
 
 
<br>
 
<br>
 
Distortions refer to generally unwanted alterations of a message signal through a transmission system. Together with the strong stochastic effects (noise, crosstalk, etc.), they are a crucial limitation for the quality and rate of transmission.
 
Distortions refer to generally unwanted alterations of a message signal through a transmission system. Together with the strong stochastic effects (noise, crosstalk, etc.), they are a crucial limitation for the quality and rate of transmission.
  
Just as the &bdquo;Stärke&rdquo; of noise can be assessed through  
+
Just as the intensity of noise can be assessed through  
 
*the ''Noise Power'' $P_{\rm N}$ and
 
*the ''Noise Power'' $P_{\rm N}$ and
 
*the ''Signal&ndash;to&ndash;Noise Ratio'' (SNR) $\rho_{\rm N}$,  
 
*the ''Signal&ndash;to&ndash;Noise Ratio'' (SNR) $\rho_{\rm N}$,  
  
  
Distortions can be quantified through
+
distortions can be quantified through
  
 
*the ''Distortion Power'' $P_{\rm D}$ and
 
*the ''Distortion Power'' $P_{\rm D}$ and
Zeile 52: Zeile 41:
 
   
 
   
  
=== Linear and nonlinear distortions ===
+
=== Linear and Nonlinear Distortions ===
 
<br>
 
<br>
 
A distinction is made between linear and nonlinear distortions:
 
A distinction is made between linear and nonlinear distortions:
*'''Nonlinear distortions'''  occur, if at all times $t$ the nonlinear correlation $y = g(x) \ne {\rm const.}  \cdot x$ exists between the signal values $x = x(t)$ at the input and $y = y(t)$ at the output, whereby  $y = g(x)$ is defined as the system's nonlinear characteristic. By creating a cosine signal at the input with frequency $f_0$ the output signal value includes  $f_0$ as well as  multiple harmonic waves. We conclude that new frequencies arise through nonlinear distortion.
+
*'''Nonlinear distortions'''  occur, if at all times $t$ the nonlinear correlation $y = g(x) \ne {\rm const.}  \cdot x$ exists between the signal values $x = x(t)$ at the input and $y = y(t)$ at the output, whereby  $y = g(x)$ is defined as the system's nonlinear characteristic. By creating a cosine signal at the input with frequency $f_0$ the output signal includes  $f_0$, as well as  multiple harmonic waves. We conclude that new frequencies arise through nonlinear distortion.
 
    
 
    
 
[[Datei:LZI_T_2_2_S3_vers2.png|center|frame|For clarification of nonlinear distortions |class=fit]]
 
[[Datei:LZI_T_2_2_S3_vers2.png|center|frame|For clarification of nonlinear distortions |class=fit]]
  
 
[[Datei:P_ID899__LZI_T_2_3_S1_neu.png|right |frame| Description of a linear system|class=fit]]
 
[[Datei:P_ID899__LZI_T_2_3_S1_neu.png|right |frame| Description of a linear system|class=fit]]
*'''Linear distortions''' occur,  if the transmission channel is characterized by a frequency response $H(f) \ne \rm const.$ Various frequencies are attenuated and delayed differently. Characteristic of this is that although frequencies can disappear (for example, through a Low&ndash;pass or a High&ndash;pass),  no new frequencies can arise.  
+
*'''Linear distortions''' occur,  if the transmission channel is characterized by a frequency response $H(f) \ne \rm const.$ Various frequencies are attenuated and delayed differently. Characteristic of this is that although frequencies can disappear (for example, through a low&ndash;pass, a high&ndash;pass, or a band&ndash;pass),  no new frequencies can arise.  
  
  
Zeile 66: Zeile 55:
  
  
=== Description forms for the frequency response ===
+
=== Description Forms for the Frequency Response ===
 
<br>
 
<br>
 
The generally complex valued frequency response can be represented as follows:  
 
The generally complex valued frequency response can be represented as follows:  
Zeile 74: Zeile 63:
  
 
This results in the following description variables:  
 
This results in the following description variables:  
*The absolute value $|H(f)|$ is called '''Amplitude response''' and in logarithmic form '''Attenuation curve''':  
+
*The absolute value $|H(f)|$ is called '''amplitude response''' and in logarithmic form '''attenuation function''':  
 
:$$a(f) = - \ln |H(f)|\hspace{0.2cm}{\rm in \hspace{0.1cm}Neper
 
:$$a(f) = - \ln |H(f)|\hspace{0.2cm}{\rm in \hspace{0.1cm}Neper
 
\hspace{0.1cm}(Np) } = - 20 \cdot \lg |H(f)|\hspace{0.2cm}{\rm in
 
\hspace{0.1cm}(Np) } = - 20 \cdot \lg |H(f)|\hspace{0.2cm}{\rm in
 
\hspace{0.1cm}Decibel \hspace{0.1cm}(dB) }.$$
 
\hspace{0.1cm}Decibel \hspace{0.1cm}(dB) }.$$
*The '''Phase response''' $b(f)$ indicates the negative frequency&ndash;dependent angle of $H(f)$ in the complex plane based on the real axis:  
+
*The '''phase function''' $b(f)$ indicates the negative frequency&ndash;dependent angle of $H(f)$ in the complex plane based on the real axis:  
 
:$$b(f) = - {\rm arc} \hspace{0.1cm}H(f) \hspace{0.2cm}{\rm in
 
:$$b(f) = - {\rm arc} \hspace{0.1cm}H(f) \hspace{0.2cm}{\rm in
 
\hspace{0.1cm}Radian \hspace{0.1cm}(rad)}.$$
 
\hspace{0.1cm}Radian \hspace{0.1cm}(rad)}.$$
  
  
=== Low&ndash;pass of order <i>N</i>  ===
+
=== Low&ndash;pass of Order <i>N</i>  ===
 
<br>
 
<br>
[[Datei:Tiefpass_version2.png|right|frame|Dämpfungsverlauf und Phasenverlauf eines Tiefpasses <i>N</i>&ndash;ter Ordnung]]
+
[[Datei:Tiefpass_version2.png|right|frame|Attenuation function $a(f)$ and phase function $b(f)$ of a low&ndash;Pass of order $N$]]
The frequency response of a realizable <i>N</i> grade low pass is:
+
The frequency response of a realizable low&ndash;pass (LP) of order $N$ is:
 
:$$H(f) = \left [\frac{1}{1 + {\rm j}\cdot f/f_0 }\right ]^N\hspace{0.05cm}.$$
 
:$$H(f) = \left [\frac{1}{1 + {\rm j}\cdot f/f_0 }\right ]^N\hspace{0.05cm}.$$
For example the RC low pass is a first grade low pass. Consequently we can obtain  
+
For example the RC low&ndash;pass is a first order low&ndash;pass. Consequently we can obtain  
*the attenuation curve:
+
*the attenuation function:
 
:$$a(f) =N/2 \cdot \ln  [1+( f/f_0)^2] \hspace{0.05cm},$$
 
:$$a(f) =N/2 \cdot \ln  [1+( f/f_0)^2] \hspace{0.05cm},$$
*the phase curve:
+
*the phase function:
 
:$$b(f) =N \cdot \arctan( f/f_0) \hspace{0.05cm},$$
 
:$$b(f) =N \cdot \arctan( f/f_0) \hspace{0.05cm},$$
 
*the attenuation factor for the frequency $f=f_i$:
 
*the attenuation factor for the frequency $f=f_i$:
:$$\alpha_i =|H(f = f_i)| =  [1+( f/f_0)^2]^{N/2}$$
+
:$$\alpha_i =|H(f = f_i)| =  [1+( f_i/f_0)^2]^{-N/2}$$
 
:$$\Rightarrow \hspace{0.3cm} x(t)= A_i\cdot \cos(2\pi f_i t) \hspace{0.1cm}\rightarrow \hspace{0.1cm}  y(t)= \alpha_i  \cdot A_i\cdot \cos(2\pi f_i t)\hspace{0.05cm},$$
 
:$$\Rightarrow \hspace{0.3cm} x(t)= A_i\cdot \cos(2\pi f_i t) \hspace{0.1cm}\rightarrow \hspace{0.1cm}  y(t)= \alpha_i  \cdot A_i\cdot \cos(2\pi f_i t)\hspace{0.05cm},$$
 
*the phase delay for the frequency $f=f_i$:
 
*the phase delay for the frequency $f=f_i$:
Zeile 101: Zeile 90:
  
  
=== High&ndash;pass of order <i>N</i>  ===
+
=== High&ndash;pass of Order <i>N</i>  ===
 
<br>
 
<br>
[[Datei:Hochpass_version2.png|right|frame|Dämpfungsverlauf und Phasenverlauf eines Hochpasses <i>N</i>&ndash;ter Ordnung]]
+
[[Datei:Hochpass_version2.png|right|frame|Attenuation function $a(f)$ and phase function $b(f)$ of a high&ndash;pass of order $N$]]
The frequency response of a realizable <i>N</i> grade high pass is:
+
The frequency response of a realizable high&ndash;pass (HP) of order $N$ is:
 
:$$H(f) = \left [\frac{ {\rm j}\cdot f/f_0 }{1 + {\rm j}\cdot f/f_0 }\right ]^N\hspace{0.05cm}.$$
 
:$$H(f) = \left [\frac{ {\rm j}\cdot f/f_0 }{1 + {\rm j}\cdot f/f_0 }\right ]^N\hspace{0.05cm}.$$
For example the LC high pass is a first grade high pass. Consequently we can obtain   
+
For example the LC high pass is a first order high pass. Consequently we can obtain   
*the attenuation curve:
+
*the attenuation function:
 
:$$a(f) =N/2 \cdot \ln  [1+( f_0/f)^2] \hspace{0.05cm},$$
 
:$$a(f) =N/2 \cdot \ln  [1+( f_0/f)^2] \hspace{0.05cm},$$
*the phase curve:
+
*the phase function:
 
:$$b(f) =-N \cdot \arctan( f_0/f) \hspace{0.05cm},$$
 
:$$b(f) =-N \cdot \arctan( f_0/f) \hspace{0.05cm},$$
 
*the attenuation factor for the frequency $f=f_i$:
 
*the attenuation factor for the frequency $f=f_i$:
:$$\alpha_i =|H(f = f_i)| =  [1+( f_0/f)^2]^{N/2}$$
+
:$$\alpha_i =|H(f = f_i)| =  [1+( f_0/f_i)^2]^{-N/2}$$
 
:$$\Rightarrow \hspace{0.3cm} x(t)= A_i\cdot \cos(2\pi f_i t) \hspace{0.1cm}\rightarrow \hspace{0.1cm}  y(t)= \alpha_i  \cdot A_i\cdot \cos(2\pi f_i t)\hspace{0.05cm},$$
 
:$$\Rightarrow \hspace{0.3cm} x(t)= A_i\cdot \cos(2\pi f_i t) \hspace{0.1cm}\rightarrow \hspace{0.1cm}  y(t)= \alpha_i  \cdot A_i\cdot \cos(2\pi f_i t)\hspace{0.05cm},$$
 
*the phase delay for the frequency $f=f_i$:
 
*the phase delay for the frequency $f=f_i$:
 
:$$\tau_i =\frac{b(f_i)}{2\pi f_i} = \frac{-N \cdot \arctan( f_0/f_i)}{2\pi f_i}$$
 
:$$\tau_i =\frac{b(f_i)}{2\pi f_i} = \frac{-N \cdot \arctan( f_0/f_i)}{2\pi f_i}$$
 
:$$\Rightarrow \hspace{0.3cm} x(t)= A_i\cdot \cos(2\pi f_i t) \hspace{0.1cm}\rightarrow \hspace{0.1cm}  y(t)=A_i\cdot \cos(2\pi f_i (t- \tau_i))\hspace{0.05cm}.$$
 
:$$\Rightarrow \hspace{0.3cm} x(t)= A_i\cdot \cos(2\pi f_i t) \hspace{0.1cm}\rightarrow \hspace{0.1cm}  y(t)=A_i\cdot \cos(2\pi f_i (t- \tau_i))\hspace{0.05cm}.$$
 
 
'''Beginn Änderungen im deutschen Text:'''
 
  
  
Zeile 125: Zeile 111:
 
{{GraueBox|TEXT=   
 
{{GraueBox|TEXT=   
 
$\text{Example:}$&nbsp;
 
$\text{Example:}$&nbsp;
This graphic shows the phase function $b(f)$ with the cut&ndash;off frequency $f_0 = 1\ \rm kHz$ and the order $N=1$
+
This graphic shows the phase function $b(f)$ with the cut&ndash;off frequency $f_0 = 1\ \rm kHz$ and order $N=1$
* of a Low&ndash;pass as a green graph and
+
* of a low&ndash;pass (green curve),
* of a High&ndash;pass as a violet graph.
+
* of a high&ndash;pass (violet curve).
  
  
 
The input signal is sinusoidal with frequency $f_{\rm S} = 1.25\ {\rm kHz}$ whereby this signal is only turned on at $t=0$:  
 
The input signal is sinusoidal with frequency $f_{\rm S} = 1.25\ {\rm kHz}$ whereby this signal is only turned on at $t=0$:  
  
'''Formel überprüfen!'''
+
:$$x(t) = \left\{ \begin{array}{l} \hspace{0.75cm}0  \\ \sin(2\pi \cdot f_{\rm S}  \cdot t ) \\  \end{array} \right.\quad\begin{array}{l} (t < 0), \\  (t>0). \\ \end{array}$$
:$$x(t) = \left\{ \begin{array}{l} \hspace{0.75cm}0  \\ \sin(2\pi \cdot f_{\rm S}  \cdot t ) \\  \end{array} \right.\quad \quad \begin{array}{*{20}c}  {\rm{f\ddot{u}r} }  \\  {\rm{f\ddot{u}r} }    \\ \end{array}\begin{array} t < 0, \\  t>0. \\ \end{array}$$
 
  
The left (outlined in blue) Graphic shows the signal $x(t)$. The dashed line marks the first zero at  $t = T_0 = 0.8\ {\rm ms}$. The other two graphics show the output signals $y_{\rm TP}(t)$ und $y_{\rm HP}(t)$of High&ndash;pass and Low&ndash;pass, whereby the change in amplitude was balanced in both cases.
+
The left graphic shows the signal $x(t)$. The dashed line marks the first zero at  $t = T_0 = 0.8\ {\rm ms}$. The other two graphics show the output signals $y_{\rm LP}(t)$ und $y_{\rm HP}(t)$ of low&ndash;pass and high&ndash;pass, whereby the change in amplitude was balanced in both cases.
  
[[Datei:Verzerrungen_HP_TP_2_version2.png|center|frame|Input signal $x(t)$ as well as output signals  $y_{\rm TP}(t)$ und $y_{\rm HP}(t)$]]
+
[[Datei:Verzerrungen_HP_TP_2_version2.png|center|frame|Input signal $x(t)$ (enframed in blue) as well as output signals  $y_{\rm LP}(t)$ &rArr; &nbsp; green and $y_{\rm HP}(t)$ &rArr; &nbsp; magenta]]
  
*The first zero of the signal $y_{\rm TP}(t)$ after the Low&ndash;pass is delayed by $\tau_{\rm TP} = 0.9/(2\pi) \cdot T_0 \approx 0.115 \ {\rm ms}$ compared to the first zero of $x(t)$ &nbsp; &rArr; &nbsp; marked with green arrow, whereby $b_{\rm TP}(f/f_{\rm S} = 0.9 \ {\rm rad})$ was considered.
+
*The first zero of the signal $y_{\rm LP}(t)$ after the low&ndash;pass is delayed by $\tau_{\rm LP} = 0.9/(2\pi) \cdot T_0 \approx 0.115 \ {\rm ms}$ compared to the first zero of $x(t)$ &nbsp; &rArr; &nbsp; marked with green arrow, whereby $b_{\rm LP}(f/f_{\rm S} = 0.9 \ {\rm rad})$ was considered.
* In contrast, the phase delay of the High&ndash;pass is negative:  $\tau_{\rm HP} = -0.67/(2\pi) \cdot T_0 \approx 0.085 \ {\rm ms}$  and therefor the first zero $y_{\rm HP}(t)$ occurs before the dashed line.
+
* In contrast, the phase delay of the high&ndash;pass is negative:  $\tau_{\rm HP} = -0.67/(2\pi) \cdot T_0 \approx -0.085 \ {\rm ms}$  and therefore the first zero of $y_{\rm HP}(t)$ occurs before the dashed line.
 
*Following this transient response, in both cases the zero crossings again come in the raster of the period duration $T_0 = 0.8 \ {\rm ms}.$
 
*Following this transient response, in both cases the zero crossings again come in the raster of the period duration $T_0 = 0.8 \ {\rm ms}.$
  
  
''Annotation:'' The shown signal paths were created using the interactive applet [[Applets:Kausale_Systeme_-_Laplacetransformation|Causal systems &ndash; Laplace transform]]. }}
+
''Remark:'' The shown signals were created using the interactive applet [[Applets:Kausale_Systeme_-_Laplacetransformation|Causal systems &ndash; Laplace transform]]. }}
  
=== Attenuation Distortions and Phase Distortions  ===
+
=== Attenuation and Phase Distortions  ===
 
<br>
 
<br>
 
[[Datei:P_ID900__LZI_T_2_3_S2_neu.png|frame| Requirements for a non&ndash;distorting channel|right|class=fit]]
 
[[Datei:P_ID900__LZI_T_2_3_S2_neu.png|frame| Requirements for a non&ndash;distorting channel|right|class=fit]]
 
The adjacent figure shows
 
The adjacent figure shows
*the even attenuation curve $a(f)$ &nbsp; &rArr; &nbsp; $a(-f) = a(f)$, and  
+
*the even attenuation function $a(f)$ &nbsp; &rArr; &nbsp; $a(-f) = a(f)$, and  
*the uneven phase curve $b(f)$ &nbsp; &rArr; &nbsp; $b(-f) = -b(- f)$
+
*the uneven function curve $b(f)$ &nbsp; &rArr; &nbsp; $b(-f) = -b(- f)$
 +
 
  
of a non&ndash;distorting channel. One notices:  
+
of a non&ndash;distorting channel. One can see:  
*In a distortion&ndash;free system the attenuation function $a(f)$ must be constant between$f_{\rm U}$ and $f_{\rm O}$ around the carrier frequency $f_{\rm T}$, where proportions of $x(t)$ exist.  
+
*In a distortion&ndash;free system the attenuation function $a(f)$ must be constant between$f_{\rm U}$ and $f_{\rm O}$ around the carrier frequency $f_{\rm T}$, where the input signal  exists &nbsp; &rArr; &nbsp;  $X(f) \ne 0$.  
*From the specified constant attenuation value $6 \ \rm dB$ follows for the amplitude response $|H(f)| = 0.5$ &nbsp; &rArr; &nbsp; The signal values of all frequencies are thus halved by the system &nbsp; &rArr; &nbsp; no attenuation distortions.
+
*From the specified constant attenuation value $6 \ \rm dB$ follows for the amplitude response $|H(f)| = 0.5$ &nbsp; &rArr; &nbsp; the signal values of all frequencies are thus halved by the system &nbsp; &rArr; &nbsp; '''no attenuation distortions'''.
*In addition, in such a system,  the phase curve $b(f)$ between $f_{\rm U}$ and $f_{\rm O}$ must increase linearly with the frequency. As a result, all frequency components are delayed by the same phase delay $τ$ &nbsp; &rArr; &nbsp;  no phase delay.
+
*In addition, in such a system,  the phase function $b(f)$ between $f_{\rm U}$ and $f_{\rm O}$ must increase linearly with the frequency. As a result, all frequency components are delayed by the same phase delay $τ$ &nbsp; &rArr; &nbsp;  '''no phase distortion'''.
*The delay $τ$ is fixed by the slope of $b(f)$. $b(f) = 0$ would result in a delay&ndash;less system  &nbsp; &rArr; &nbsp; $τ = 0$.  
+
*The delay $τ$ is fixed by the slope of $b(f)$. The phase function $b(f) \equiv 0$ would result in a delay&ndash;less system  &nbsp; &rArr; &nbsp; $τ = 0$.  
  
  
The following summary considers that in this applet the input signal is always the sum of two harmonic oscillations,
+
The following summary considers that &ndash; in this applet &ndash; the input signal is always the sum of two harmonic oscillations,
 
:$$x(t) = x_1(t) + x_2(t) = A_1\cdot \cos\left(2\pi f_1\cdot t- \varphi_1\right)+A_2\cdot \cos\left(2\pi f_2\cdot t- \varphi_2\right), $$
 
:$$x(t) = x_1(t) + x_2(t) = A_1\cdot \cos\left(2\pi f_1\cdot t- \varphi_1\right)+A_2\cdot \cos\left(2\pi f_2\cdot t- \varphi_2\right), $$
and therefor the channel influence is fully described by the attenuation factors $\alpha_1$ and $\alpha_2$ as well as the phase delays  $\tau_1 = \tau_2$:
+
and therefore the channel influence is fully described by the attenuation factors $\alpha_1$ and $\alpha_2$ as well as the phase delays  $\tau_1$ and $\tau_2$:
 
:$$y(t) = \alpha_1 \cdot  x_1(t-\tau_1)  +  \alpha_2  \cdot  x_2(t-\tau_2).$$
 
:$$y(t) = \alpha_1 \cdot  x_1(t-\tau_1)  +  \alpha_2  \cdot  x_2(t-\tau_2).$$
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
 
$\text{Summary:}$&nbsp;
 
$\text{Summary:}$&nbsp;
* Attenuation distortions occur when  $\alpha_1 \ne \alpha_2$. If $\alpha_1 \ne \alpha_2$ and $\tau_1 = \tau_2$, then there are exclusively attenuation distortions.  
+
*A signal $y(t)$ is only '''distortion&ndash;free''' compared to $x(t)$ if $\alpha_1 = \alpha_2= \alpha$ &nbsp;<u> and </u>&nbsp; $\tau_1 = \tau_2= \tau$ &nbsp; &rArr; &nbsp; $y(t) = \alpha \cdot  x(t-\tau)$.
* Phase distortions occur when $\tau_1 \ne \tau_2$. If $\tau_1 \ne \tau_2$ and $\alpha_1 = \alpha_2$, then there are exclusively phase distortions.  
+
* '''Attenuation distortions''' occur when  $\alpha_1 \ne \alpha_2$. If $\alpha_1 \ne \alpha_2$ and $\tau_1 = \tau_2$, then there are exclusively attenuation distortions.  
*A signal $y(t)$ is only distortion&ndash;free compared to $x(t)$ if $\alpha_1 = \alpha_2= \alpha$ &nbsp;<u> and </u>&nbsp; $\tau_1 = \tau_2= \tau$ &nbsp; &rArr; &nbsp; $y(t) = \alpha \cdot  x(t-\tau)$. }}
+
* '''Phase distortions''' occur when $\tau_1 \ne \tau_2$. If $\tau_1 \ne \tau_2$ and $\alpha_1 = \alpha_2$, then there are exclusively phase distortions. }}
 +
 
 +
 
 +
 
 +
 
 +
==Exercises==
 +
[[Datei:Exercises_verzerrungen.png|right]]
 +
*First choose an exercise number.
 +
*An exercise description is displayed.
 +
*Parameter values are adjusted to the respective exercises.
 +
*Click &bdquo;Hide solution&rdquo; to display the solution.  
 +
 
  
'''Ende Änderungen im deutschen Text:'''
+
Number &bdquo;0&rdquo; is a &bdquo;Reset&rdquo; button:
 +
*Sets parameters to initial values (when loading the page).
 +
*Displays a &bdquo;Reset text&rdquo; to describe the applet further.
  
==Vorschlag für die Versuchsdurchführung==
 
<br>
 
BlaBla
 
 
   
 
   
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
'''(1)''' &nbsp; We set the parameters for the transmitter signal $x(t)$ to $A_1 = 0.8\ {\rm V}, \ A_2 = 0.6\ {\rm V}, \ f_1 = 0.5\ {\rm kHz}, \ f_2 = 1.5\ {\rm kHz}, \ \varphi_1 = 90^\circ, \ \varphi_2 = 0^\circ$.  
+
'''(1)''' &nbsp; We consider the parameters $A_1 = 0.8\ {\rm V}, \ A_2 = 0.6\ {\rm V}, \ f_1 = 0.5\ {\rm kHz}, \ f_2 = 1.5\ {\rm kHz}, \ \varphi_1 = 90^\circ, \ \varphi_2 = 30^\circ$ for the input signal $x(t)$.  
:Calculate the signal's cycle duration $T_0$ and power $P_x$. Can you read the value for $P_x$ off the applet? }}
+
:Calculate the signal's period duration $T_0$ and power $P_x$. Can you read the value for $P_x$ off the applet? }}
  
  
Zeile 187: Zeile 183:
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
'''(2)''' &nbsp;Vary $\varphi_2$ between $\pm 180^\circ$ while assuming the other parameters from '''(1)'''. How does the value of $T_0$ and $P_x$ change?}}
+
'''(2)''' &nbsp;Vary $\varphi_2$ between $\pm 180^\circ$ while keeping all other parameters from Exercise (1). How does the value of $T_0$ and $P_x$ change?}}
  
  
Zeile 193: Zeile 189:
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
'''(3)''' &nbsp; Vary $f_2$ between $0 \le f_2 \le 10\ {\rm kHz}$ while assuming the other parameters from '''(1)'''. How does the value of $P_x$ change?}}
+
'''(3)''' &nbsp; Vary $f_2$ between $0 \le f_2 \le 10\ {\rm kHz}$ while keeping all  other parameters from Exercise (1). How does the value of $P_x$ change?}}
  
  
$\hspace{1.0cm}\Rightarrow\hspace{0.3cm}\text{No changes if }f_2 \ne 0\text{ oder } f_2 \ne f_1\text{:}\hspace{0.3cm} \hspace{0.15cm}\underline{P_x =  0.5 \ {\rm V^2}}\text{.} \hspace{0.2cm} T_0 \text{ changes if }f_2\text{is not a multiple of }f_1$.
+
$\hspace{1.0cm}\Rightarrow\hspace{0.3cm}\text{No changes if }f_2 \ne 0\text{ and } f_2 \ne f_1\text{:}\hspace{0.3cm} \hspace{0.15cm}\underline{P_x =  0.5 \ {\rm V^2}}\text{.} \hspace{0.2cm} T_0 \text{ changes if }f_2\text{is not a multiple of }f_1$.
  
 
$\hspace{1.85cm}\text{If }f_2 = 0\text{:}\hspace{0.2cm} P_x = A_1^2/2 + A_2^2\hspace{0.15cm}\underline{ = 0.68 \ {\rm V^2}}$. $\hspace{3cm}$
 
$\hspace{1.85cm}\text{If }f_2 = 0\text{:}\hspace{0.2cm} P_x = A_1^2/2 + A_2^2\hspace{0.15cm}\underline{ = 0.68 \ {\rm V^2}}$. $\hspace{3cm}$
  
$\hspace{1.85cm}\text{If}f_2 = f_1\text{:}\hspace{0.2cm} P_x = [A_1\cos(\varphi_1) + A_2\cos(\varphi_2)]^2/2 + [A_1\sin(\varphi_1) + A_2\sin(\varphi_2)]^2/2 \text{.  Mit } \varphi_1 = 90^\circ, \ \varphi_2 = 0^\circ\text{:}\hspace{0.3cm}\hspace{0.15cm}\underline{ P_x =  0.5 \ {\rm V^2}}\text{.} $
+
$\hspace{1.85cm}\text{If }f_2 = f_1\text{:}\hspace{0.2cm} P_x = [A_1\cos(\varphi_1) + A_2\cos(\varphi_2)]^2/2 + [A_1\sin(\varphi_1) + A_2\sin(\varphi_2)]^2/2 \text{.} $
 +
   
 +
$\hspace{1.85cm}\text{With } \varphi_1 = 90^\circ, \ \varphi_2 = 30^\circ\text{:}\hspace{0.3cm}\hspace{0.15cm}\underline{ P_x =  0.74 \ {\rm V^2}}\text{.} $
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
'''(4)''' &nbsp; Going by the previous output signal $x(t)$ we set following parameters to: $\alpha_1 = \alpha_2 = 0.5, \ \tau_1 = \tau_2  = 0.5\ {\rm ms}$, $k_{\rm M} = 1 \text{ and } \tau_{\rm M} = 0$ .  
+
'''(4)''' &nbsp; Keeping the previous input signal $x(t)$, set following parameters
:Are there linear distortions? Calculate the reception power $P_y$ and the power $P_\varepsilon$ of the differential signal $\varepsilon(t) = z(t) - x(t)$ }}
+
: $\alpha_1 = \alpha_2 = 0.5, \ \tau_1 = \tau_2  = 0.5\ {\rm ms}$, $k_{\rm M} = 1 \text{ and } \tau_{\rm M} = 0$ .  
 +
:Are there linear distortions? Calculate the received power $P_y$ and the power $P_\varepsilon$ of the differential signal $\varepsilon(t) = z(t) - x(t)$. }}
  
  
 
$\hspace{1.0cm}\Rightarrow \hspace{0.3cm}\hspace{0.15cm}\underline{ y(t) = 0.5 \cdot x(t- 1\ {\rm ms})}\text{ is only attenuated and delayed, but not distorted.}$   
 
$\hspace{1.0cm}\Rightarrow \hspace{0.3cm}\hspace{0.15cm}\underline{ y(t) = 0.5 \cdot x(t- 1\ {\rm ms})}\text{ is only attenuated and delayed, but not distorted.}$   
  
$\hspace{1.85cm}\text{Reception power:}\hspace{0.2cm} P_y = (A_1/2)^2/2 + (A_2/2)^2/2\hspace{0.15cm}\underline{ = 0.125 \ {\rm V^2}}\text{.  } P_\varepsilon \text{ is significantly greater:} \hspace{0.1cm} \hspace{0.15cm}\underline{P_\varepsilon = 0.625 \ {\rm V^2}}.$
+
$\hspace{1.85cm}\text{Received power:}\hspace{0.2cm} P_y = (A_1/2)^2/2 + (A_2/2)^2/2\hspace{0.15cm}\underline{ = 0.125 \ {\rm V^2}}\text{.  } P_\varepsilon \text{ is significantly larger:} \hspace{0.1cm} \hspace{0.15cm}\underline{P_\varepsilon = 0.625 \ {\rm V^2}}.$
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
'''(5)''' &nbsp; With otherwise the same settings as '''(4)''', vary the matching parameters $k_{\rm M} \text{ and } \tau_{\rm M}$. How big is the distortion power $P_{\rm D}$?}}
+
'''(5)''' &nbsp; With the same settings as in Exercise (4), vary the matching parameters $k_{\rm M} \text{ and } \tau_{\rm M}$. How big is the distortion power $P_{\rm D}$?}}
  
  
$\hspace{1.0cm}\Rightarrow \hspace{0.3cm} P_{\rm D}\text{is equal to }P_\varepsilon  \text{ when using the ideal matching parameters:} \hspace{0.2cm}k_{\rm M} = 2 \text{ und } \tau_{\rm M}=T_0 - 0.5\ {\rm ms} = 1.5\ {\rm ms}$
+
$\hspace{1.0cm}\Rightarrow \hspace{0.3cm} P_{\rm D}\text{ is equal to }P_\varepsilon  \text{ when using the ideal matching parameters:} \hspace{0.2cm}k_{\rm M} = 2 \text{ and } \tau_{\rm M}=T_0 - 0.5\ {\rm ms} = 1.5\ {\rm ms}$
  
 
$\hspace{1.0cm}\Rightarrow \hspace{0.3cm}z(t) = x(t)\hspace{0.3cm}\Rightarrow \hspace{0.3cm}\varepsilon(t) = 0\hspace{0.3cm}\Rightarrow \hspace{0.3cm}P_{\rm D}\hspace{0.15cm}\underline{ = P_\varepsilon = 0} \hspace{0.3cm}\Rightarrow \hspace{0.3cm}\text{Neither attenuation nor phase distortion.}$   
 
$\hspace{1.0cm}\Rightarrow \hspace{0.3cm}z(t) = x(t)\hspace{0.3cm}\Rightarrow \hspace{0.3cm}\varepsilon(t) = 0\hspace{0.3cm}\Rightarrow \hspace{0.3cm}P_{\rm D}\hspace{0.15cm}\underline{ = P_\varepsilon = 0} \hspace{0.3cm}\Rightarrow \hspace{0.3cm}\text{Neither attenuation nor phase distortion.}$   
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
'''(6)''' &nbsp; The channel parameters are now set to: $\alpha_1 = 0.5, \hspace{0.15cm}\underline{\alpha_2 = 0.2}, \ \tau_1 = \tau_2  = 0.5\ {\rm ms}$. Calculate the distortion power $P_{\rm D}$ and the $\rm SDR$ $\rho_{\rm D}$?}}
+
'''(6)''' &nbsp; The channel parameters are now set to: $\alpha_1 = 0.5, \hspace{0.15cm}\underline{\alpha_2 = 0.2}, \ \tau_1 = \tau_2  = 0.5\ {\rm ms}$. Calculate the distortion power $P_{\rm D}$ and the Signal-to-Distortion ratio $(\rm SDR) \ \rho_{\rm D}$.}}
  
  
$\hspace{1.0cm}\Rightarrow \hspace{0.3cm} P_{\rm D} = P_\varepsilon  \text{ when using the best matching parameters:} \hspace{0.2cm}\hspace{0.15cm}\underline{k_{\rm M} = 2.24} \text{ und } \hspace{0.15cm}\underline{\tau_{\rm M} = 1.5\ {\rm ms} }\text{:} \hspace{0.2cm}\hspace{0.15cm}\underline{P_{\rm D} =  0.059 \ {\rm V^2}}$.
+
$\hspace{1.0cm}\Rightarrow \hspace{0.3cm} P_{\rm D} = P_\varepsilon  \text{ when using the best matching parameters:} \hspace{0.2cm}\hspace{0.15cm}\underline{k_{\rm M} = 2.24} \text{ and } \hspace{0.15cm}\underline{\tau_{\rm M} = 1.5\ {\rm ms} }\text{:} \hspace{0.2cm}\hspace{0.15cm}\underline{P_{\rm D} =  0.059 \ {\rm V^2}}$.
  
 
$\hspace{1.85cm}\text{Attenuation distortions only.} \hspace{0.3cm}\text{Signal-to-Distortion-Ratio}\ \hspace{0.15cm}\underline{\rho_{\rm D} = P_x/P_\varepsilon \approx 8.5}$.   
 
$\hspace{1.85cm}\text{Attenuation distortions only.} \hspace{0.3cm}\text{Signal-to-Distortion-Ratio}\ \hspace{0.15cm}\underline{\rho_{\rm D} = P_x/P_\varepsilon \approx 8.5}$.   
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
'''(7)''' &nbsp; The channel parameters are now set to: $\alpha_1 = \alpha_2 = 0.5, \ \tau_1 \hspace{0.15cm}\underline{= 2\ {\rm ms} }, \  \tau_2  = 0.5\ {\rm ms}$. Calculate the distortion power $P_{\rm D}$ and the SDR $\rho_{\rm D}$?}}
+
'''(7)''' &nbsp; The channel parameters are now set to: $\alpha_1 = \alpha_2 = 0.5, \ \tau_1 \hspace{0.15cm}\underline{= 2\ {\rm ms} }, \  \tau_2  = 0.5\ {\rm ms}$. Calculate the distortion power $P_{\rm D}$ and the the Signal-to-Distortion ratio $\rho_{\rm D}$.}}
  
  
$\hspace{1.0cm}\Rightarrow \hspace{0.3cm} P_{\rm D} = P_\varepsilon  \text{when using the best matching parameters:} \hspace{0.2cm}\hspace{0.15cm}\underline{k_{\rm M} = 1.82} \text{ and } \tau_{\rm M}\hspace{0.15cm}\underline{  = 0.15\ {\rm ms} }\text{:} \hspace{0.2cm}\hspace{0.15cm}\underline{P_{\rm D} =  0.072 \ {\rm V^2}}$.
+
$\hspace{1.0cm}\Rightarrow \hspace{0.3cm} P_{\rm D} = P_\varepsilon  \text{when using the best matching parameters:} \hspace{0.2cm}\hspace{0.15cm}\underline{k_{\rm M} = 1.84} \text{ and } \tau_{\rm M}\hspace{0.15cm}\underline{  = 0.15\ {\rm ms} }\text{:} \hspace{0.2cm}\hspace{0.15cm}\underline{P_{\rm D} =  0.071 \ {\rm V^2}}$.
  
 
$\hspace{1.85cm}\text{Phase distortions only.} \hspace{0.3cm}\text{Signal-to-Distortion-Ratio}\ \hspace{0.15cm}\underline{\rho_{\rm D} = P_x/P_\varepsilon \approx 7}$.   
 
$\hspace{1.85cm}\text{Phase distortions only.} \hspace{0.3cm}\text{Signal-to-Distortion-Ratio}\ \hspace{0.15cm}\underline{\rho_{\rm D} = P_x/P_\varepsilon \approx 7}$.   
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
'''(8)''' &nbsp; `The channel parameters are now set to: $\hspace{0.15cm}\underline{\alpha_1 = 0.5} , \hspace{0.15cm}\underline{\alpha_2 = 0.2} , \ \hspace{0.15cm}\underline{\tau_1= 2\ {\rm ms} }, \  \hspace{0.15cm}\underline{\tau_2  = 0.5\ {\rm ms} }$. Calculate the distortion power $P_{\rm D}$ and the SDR $\rho_{\rm D}$? How can $y(t)$ be approximated?}}
+
'''(8)''' &nbsp; The channel parameters are now set to: $\hspace{0.15cm}\underline{\alpha_1 = 0.5} , \hspace{0.15cm}\underline{\alpha_2 = 0.2} , \ \hspace{0.15cm}\underline{\tau_1= 0.5\ {\rm ms} }, \  \hspace{0.15cm}\underline{\tau_2  = 0.3\ {\rm ms} }$. Are there attenuation distortions? Are there phase distortions? How can $y(t)$ be approximated? ''Hint:'' $\cos(3x) = 4 \cdot \cos^3(x) - 3\cdot \cos(x).$}}
 +
 
  
 +
$\hspace{1.0cm}\Rightarrow\hspace{0.3cm} \text{Both attenuation and phase distortions, because }\alpha_1 \ne \alpha_2\text{ and }\tau_1 \ne \tau_2$.
  
$\hspace{1.0cm}\Rightarrow\hspace{0.3cm} \text{Both attenuation and phase distortions. Best possible adaptation:} \hspace{0.2cm}\hspace{0.15cm}\underline{k_{\rm M} = 2.06} \text{, } \hspace{0.15cm}\underline{\tau_{\rm M} = 0.15\ {\rm ms} }\text{:} \hspace{0.2cm}\hspace{0.15cm}\underline{P_{\rm D} = 0.136 \ {\rm V^2}},\hspace{0.1cm}\hspace{0.15cm}\underline{\rho_{\rm D}  \approx 3.7}$.
+
$\hspace{1.85cm}y(t) = y_1(t) + y_2(t)\ \Rightarrow \ y_1(t) = A_1 \cdot \alpha_1 \cdot \sin[2\pi f_1\ (t- 0.5\ \rm ms)] = -0.4 \ {\rm V} \cdot \cos(2\pi f_1 t)$
  
$\hspace{1.85cm}\text{Combining }\varphi \text{- und } \tau\text{-Parameter: } y(t) = 0.4 \ {\rm V} \cdot \sin\ (2\pi f_1 t) - 0.12 \ {\rm V} \cdot \sin\ (2\pi \cdot 3f_1\cdot t) \hspace{0.15cm}\underline{\approx 0.52 \ {\rm V} \cdot \sin^3(2\pi f_1 t)}$.
+
$\hspace{1.85cm} y_2(t) = \alpha_2 \cdot x_2(t- \tau_2) \text{ mit }x_2(t) = A_2 \cdot \cos[2\pi f_2\  (t- 30^\circ)] \approx  A_2 \cdot \cos[2\pi f_2\ (t- 1/36 \ \rm ms)]$
 +
 
 +
$\hspace{1.85cm} \Rightarrow \ y_2(t) = 0.12 \ {\rm V} \cdot \cos[2\pi f_2\ (t- 0.328 \ {\rm ms})] \approx -0.12 \ { \rm V} \cdot \cos[2\pi f_2t] $.
 +
 
 +
$\hspace{1.85cm}  \Rightarrow \ y(t) = y_1(t) + y_2(t) \approx -0.4 \ {\rm V} \cdot [\cos(2\pi \cdot f_1\cdot t) + 1/3 \cdot \cos(2\pi \cdot 3 f_1 \cdot t) =  -0.533 \ {\rm V} \cdot \cos^3(2\pi f_1 t)$.
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
'''(9)''' &nbsp; Nun gelte $\underline{A_1 = A_2 = 1\ {\rm V}, \ f_1 = 1\ {\rm kHz}, \ f_2 = 1\ {\rm kHz}, \ \varphi_1 = 0^\circ, \ \varphi_2 = 0^\circ}$. Der Kanal sei ein <u>Tiefpass erster Ordnung</u>  $\underline{(f_0 = 1\ {\rm kHz})}$.  
+
'''(9)''' &nbsp; Using the parameters from  Exercise  (8),  calculate the distortion power $P_{\rm D}$ and the the Signal-to-Distortion ratio  $\rho_{\rm D}$.}}
:Gibt es Dämpfungsverzerrungen? Gibt es Phasenverzerrungen? Wie groß ist  nun die Verzerrungsleistung $P_{\rm D}$?}}
+
 
 +
 
 +
$\hspace{1.0cm}\text{Best possible adaptation:} \hspace{0.2cm}\hspace{0.15cm}\underline{k_{\rm M} = 1.96} \text{, } \hspace{0.15cm}\underline{\tau_{\rm M} = 1.65\ {\rm ms} }\text{:} \hspace{0.2cm}\hspace{0.15cm}\underline{P_{\rm D} = 0.15 \ {\rm V^2} },\hspace{0.1cm}\hspace{0.15cm}\underline{\rho_{\rm D} = 0.500/0.15 \approx 3.3}$.
  
 +
{{BlaueBox|TEXT= 
 +
'''(10)''' &nbsp;Now we set $A_2 = 0$ and $A_1 =  1\ {\rm V}, \ f_1 = 1\ {\rm kHz}, \ \varphi_1 = 0^\circ$. The channel is a <u>Low-pass of  order  1</u>  $\underline{(f_0 = 1\ {\rm kHz})}$. <br>Are there any attenuation  and/or phase distortions? Calculate the channel coefficients $\alpha_1$ and $\tau_1$.}}
  
$\hspace{1.0cm}\Rightarrow\hspace{0.3cm} \text{Dämpfungsverzerrungen, da }\hspace{0.15cm}\underline{\alpha_1 = 0.71 \ne \alpha_2 = 0.45} \text{; geringere Phasenverzerrungen, da }\hspace{0.15cm}\underline{ \tau_1 = 0.13 \ {\rm ms} \approx  \tau_2 = 0.09 \ {\rm ms}}$.
 
  
$\hspace{1.85cm}\text{ Verzerrungsleistung }\hspace{0.15cm}\underline{P_{\rm D} = 0.074 \ {\rm V^2}\text{ bei bestmöglicher Anpassung:} \hspace{0.2cm}k_{\rm M}\hspace{0.15cm}\underline{ = 1.6} \text{ und } \tau_{\rm M}\hspace{0.15cm}\underline{ = 0.9\ {\rm ms} }$.
+
$\hspace{1.0cm}\text{At only one frequency there are neither attenuation nor phase distortions.}$
 +
$\hspace{1.0cm}\text{Attenuation factor for }f_1=f_0\text{ and }N=1\text{:   }\alpha_1 =|H(f = f_1)| =  [1+( f_1/f_0)^2]^{-N/2} = 2^{-1/2}= 1/\sqrt{2}\hspace{0.15cm}\underline{=0.707},$
 +
$\hspace{1.0cm}\text{Phase factor for }f_1=f_0\text{ and }N=1\text{:  }\tau_1 = N \cdot \arctan( f_1/f_0)/(2 \pi f_1)=\arctan( 1)/(2 \pi f_1) =1/(8f_1) \hspace{0.15cm}\underline{=0.125 \ \rm ms}.$
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
'''(10)''' &nbsp; Wie ändern sich die Kanalparameter durch einen <u>Tiefpass zweiter Ordnung</u> gegenüber einem Tiefpass erster Ordnung $(f_0 = 1\ {\rm kHz})$.
+
'''(11)''' &nbsp; How do the channel parameters change when using a <u>Low-pass of order 2</u> compared to a Low-pass of order 1 $(f_0 = 1\ {\rm kHz})$?}}  
:Wie groß ist  nun die Verzerrungsleistung $P_{\rm D}$? Wie groß ist  nun die Verzerrungsleistung $P_{\rm D}$?}}
 
  
  
$\hspace{1.0cm}\Rightarrow\hspace{0.3cm} \text{Es gilt }\hspace{0.15cm}\underline{\alpha_1 = 0.71^2 \approx 0.5, \alpha_2 = 0.45^2  \approx 0.5, \tau_1 = 2 \cdot 0.13 \approx 0.25 \ {\rm ms} \tau_2 = 2 \cdot 0.09 \ {\rm ms} \approx 0.18 \ {\rm ms}} $.
+
$\hspace{1.0cm}\alpha_1 = 0.707^2 = 0.5$ and $\tau_1 = 2 \cdot 0.125 = 0.25 \ {\rm ms}$.
  
$\hspace{1.85cm}P_{\rm D} =  0.228 \ {\rm V^2} \text { ist größer und der 2 kHz-Anteil wird im Vergleich zum  2 kHz-Anteil  noch mehr unterdrückt}$.  
+
$\hspace{1.0cm}\text{The signal }y(t)\text{ is only half as big as }x(t)\text{ and is retarded: The cosine turns into a sine function}$.  
  
 
{{BlaueBox|TEXT=   
 
{{BlaueBox|TEXT=   
'''(11)''' &nbsp; Welche Unterschiede ergeben sich bei einem <u>Hochpass zweiter Ordnung</u> gegenüber einem Tiefpass zweiter Ordnung $(f_0 = 1\ {\rm kHz})$. }}
+
'''(12)''' &nbsp; What differences arise when using a  <u>High-pass of order 2</u> compared to a Low-pass of order 2 $(f_0 = 1\ {\rm kHz})$? }}
 +
 
 +
 
 +
$\hspace{1.0cm}\text{Since }f_1 = f_0\text{ the attenuation factor }\alpha_1 = 0.5\text{ stays the same and }\tau_1 = -0.25 \ {\rm ms}\text{ which means:}$
  
 +
$\hspace{1.0cm}\text{The signal }y(t)\text{  is also only half as big as }x(t)\text{ and precedes it: The cosine turns into the Minus&ndash;sine function}$.
  
$\hspace{1.0cm}\Rightarrow\hspace{0.3cm} \text{???????????????}$
+
{{BlaueBox|TEXT= 
 +
'''(13)''' &nbsp; What differences at the signal $y(t)$ can be observed between the Low-pass and the High-pass of order 2  $(f_0 = 1\ {\rm kHz})$ when you start with the initial input signal according to Exercise (1) and continuously raise $f_2$ up to $10 \ \rm kHz$ ? }}
  
==Zur Handhabung des Applets==
 
[[Datei:Periodendauer_fertig_version1.png|left]]
 
&nbsp; &nbsp; '''(A)''' &nbsp; &nbsp; Parametereingabe per Slider
 
  
&nbsp; &nbsp; '''(B)''' &nbsp; &nbsp; Bereich der graphischen Darstellung
+
$\hspace{1.0cm}\text{With the Low-pass the second term is increasingly suppressed. For }f_2 =  10 \ {\rm kHz}\text{: }y_{\rm LP}(t) \approx 0.8 \cdot x_1(t-0.3 \ \rm ms).$ 
  
&nbsp; &nbsp; '''(C)''' &nbsp; &nbsp; Variationsmöglichkeit für die  graphische Darstellung
+
$\hspace{1.0cm}\text{With the High-pass however the second  term dominates. For }f_2 =  10 \ {\rm kHz}\text{: }y_{\rm HP}(t) \approx 0.2 \cdot x_1(t+0.7 \ {\rm ms}) + x_2(t).$
  
&nbsp; &nbsp; '''(D)''' &nbsp; &nbsp; Abspeichern und Zurückholen von Parametersätzen
+
==Applet Manual==
 +
[[Datei:Handhabung_verzerrungen.png|center]]
 +
<br>
 +
&nbsp; &nbsp; '''(A)''' &nbsp; &nbsp; Parameter selection for input signal $x(t)$ per slider: Amplitude, frequency, phase values
  
&nbsp; &nbsp; '''(E)''' &nbsp; &nbsp; Numerikausgabe des Hauptergebnisses $T_0$; graphische Verdeutlichung durch rote Linie
+
&nbsp; &nbsp; '''(B)''' &nbsp; &nbsp; Preselection for channel parameters per slider: Low-pass or High-pass
  
&nbsp; &nbsp; '''(F)''' &nbsp; &nbsp; Ausgabe von $x_{\rm max}$ und der Signalwerte $x(t_*) = x(t_* + T_0)= x(t_* + 2T_0)$
+
&nbsp; &nbsp; '''(C)''' &nbsp; &nbsp; Selction of channel parameters per slider: Dämpfungsfaktoren und Phasenlaufzeiten
  
&nbsp; &nbsp; '''(G)''' &nbsp; &nbsp; Darstellung der Signalwerte $x(t_*) = x(t_* + T_0)= x(t_* + 2T_0)$ durch grüne Punkte
+
&nbsp; &nbsp; '''(D)''' &nbsp; &nbsp; Selection of channel parameters for High and Low pass: Order$n$, cut-off-frequency $f_0$
  
&nbsp; &nbsp; '''(H)''' &nbsp; &nbsp; Einstellung der Zeit $t_*$ für die Signalwerte $x(t_*) = x(t_* + T_0)= x(t_* + 2T_0)$
+
&nbsp; &nbsp; '''(E)''' &nbsp; &nbsp; Selection of matching parameters $k_{\rm M}$ and $\varphi_{\rm M}$
  
'''Details zum obigen Punkt (C)'''
+
&nbsp; &nbsp; '''(F)''' &nbsp; &nbsp; Selection of the signals to be displayed: $x(t)$,  $y(t)$, $z(t)$, $\varepsilon(t)$, $\varepsilon^2(t)$
+
 
&nbsp; &nbsp; '''(*)''' &nbsp; Zoom&ndash;Funktionen &bdquo;$+$&rdquo; (Vergrößern), &bdquo;$-$&rdquo; (Verkleinern) und $\rm o$ (Zurücksetzen)
+
&nbsp; &nbsp; '''(G)''' &nbsp; &nbsp; Graphic display of the signals
 +
 
 +
&nbsp; &nbsp; '''(H)''' &nbsp; &nbsp; Enter the time $t_*$ for the numeric output
 +
 
 +
&nbsp; &nbsp; '''( I )''' &nbsp; &nbsp; numeric output of the signal values $x(t_*)$,  $y(t_*)$, $z(t_*)$  and $\varepsilon(t_*)$
 +
 
 +
&nbsp; &nbsp; '''(J)''' &nbsp; &nbsp; Numeric output of the main result $P_\varepsilon$
 +
 
 +
&nbsp; &nbsp; '''(K)''' &nbsp; &nbsp; Save and reall parameters
  
&nbsp; &nbsp; '''(*)''' &nbsp; Verschieben mit &bdquo;$\leftarrow$&rdquo; (Ausschnitt nach links, Ordinate nach rechts),  &bdquo;$\uparrow$&rdquo; &bdquo;$\downarrow$&rdquo; und &bdquo;$\rightarrow$&rdquo;
+
&nbsp; &nbsp; '''(L)''' &nbsp; &nbsp; Exercises: Exercise selection, description and solution
  
'''Andere Möglichkeiten''':
+
&nbsp; &nbsp; '''(M)''' &nbsp; &nbsp; Variation possibilities for the graphic display
 +
 +
$\hspace{1.5cm}$Zoom&ndash;functions &bdquo;$+$&rdquo; (scale up), &bdquo;$-$&rdquo; (scale down) und $\rm o$ (reset)
  
&nbsp; &nbsp; '''(*)''' &nbsp; Gedrückte Shifttaste und Scrollen:  Zoomen im Koordinatensystem,
+
$\hspace{1.5cm}$Move with &bdquo;$\leftarrow$&rdquo; (section to the left, ordinate to the right),  &bdquo;$\uparrow$&rdquo; &bdquo;$\downarrow$&rdquo; und &bdquo;$\rightarrow$&rdquo;
  
&nbsp; &nbsp; '''(*)''' &nbsp; Gedrückte Shifttaste und linke Maustaste: Verschieben des Koordinatensystems.
+
$\hspace{1.5cm}$'''Other options'':
<br clear = all>
 
  
 +
$\hspace{1.5cm}$Hold shift and scroll:  Zoom in on/out of coordinate system,
  
==Über die Autoren==
+
$\hspace{1.5cm}$Hold shift and left click: Move the coordinate system.
Dieses interaktive Berechnungstool  wurde am [http://www.lnt.ei.tum.de/startseite Lehrstuhl für Nachrichtentechnik] der [https://www.tum.de/ Technischen Universität München] konzipiert und realisiert.
 
*Die erste Version wurde 2005 von [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_Studierende#Bettina_Hirner_.28Diplomarbeit_LB_2005.29|Bettina Hirner]] im Rahmen ihrer Diplomarbeit mit &bdquo;FlashMX&ndash;Actionscript&rdquo; erstellt (Betreuer: [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_Mitarbeiter_und_Dozenten#Prof._Dr.-Ing._habil._G.C3.BCnter_S.C3.B6der_.28am_LNT_seit_1974.29|Günter Söder]] ).
 
*2018 wurde dieses Programm  von [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_Studierende#Jimmy_He_.28Bachelorarbeit_2018.29|Jimmy He]] im Rahmen seiner Bachelorarbeit (Betreuer: [[Biografien_und_Bibliografien/Beteiligte_der_Professur_Leitungsgebundene_%C3%9Cbertragungstechnik#Tasn.C3.A1d_Kernetzky.2C_M.Sc._.28bei_L.C3.9CT_seit_2014.29|Tasnád Kernetzky]])  auf  &bdquo;HTML5&rdquo; umgesetzt und neu gestaltet.
 
  
==Nochmalige Aufrufmöglichkeit des Applets in neuem Fenster==
+
==About the Authors==
 +
This interactive calculation was designed and realized at the [http://www.lnt.ei.tum.de/startseite Lehrstuhl für Nachrichtentechnik] of the [https://www.tum.de/ Technische Universität München].
 +
*The original version was created in 2005 by [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_Studierende#Bettina_Hirner_.28Diplomarbeit_LB_2005.29|Bettina Hirner]] as part of her Diploma thesis using &bdquo;FlashMX&ndash;Actionscript&rdquo; (Supervisor: [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_Mitarbeiter_und_Dozenten#Prof._Dr.-Ing._habil._G.C3.BCnter_S.C3.B6der_.28am_LNT_seit_1974.29|Günter Söder]] ).
 +
*In 2018 this Applet was redesigned and updated to &bdquo;HTML5&rdquo; by [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_Studierende#Jimmy_He_.28Bachelorarbeit_2018.29|Jimmy He]] as part of his Bachelor's thesis (Supervisor: [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_LÜT-Angehörige#Dr.-Ing._Tasn.C3.A1d_Kernetzky_.28bei_L.C3.9CT_von_2014-2022.29|Tasnád Kernetzky]]) .
  
{{LntAppletLink|verzerrungen|Open Applet in new Tab}}
+
==Once again: Open Applet in new Tab==
  
[[Category:Applets|^Periodendauer^]]
+
{{LntAppletLinkEn|linDistortions_en}}

Aktuelle Version vom 26. Oktober 2023, 11:44 Uhr

Open Applet in new Tab

Applet Description


This applet illustrates the effects of linear distortions (attenuation distortions and phase distortions) with

Meanings of the used signals
  • the input signal $x(t)$   ⇒   power $P_x$:
$$x(t) = x_1(t) + x_2(t) = A_1\cdot \cos\left(2\pi f_1\cdot t- \varphi_1\right)+A_2\cdot \cos\left(2\pi f_2\cdot t- \varphi_2\right), $$
  • the output signal $y(t)$   ⇒   power $P_y$:
$$y(t) = \alpha_1 \cdot x_1(t-\tau_1) + \alpha_2 \cdot x_2(t-\tau_2),$$
  • the matched output signal $z(t)$   ⇒   power $P_z$:
$$z(t) = k_{\rm M} \cdot y(t-\tau_{\rm M}) + \alpha_2 \cdot x_2(t-\tau_2),$$
  • the difference signal   $\varepsilon(t) = z(t) - x(t)$   ⇒   power $P_\varepsilon$.


The next block in the model above is Matching: The output signal $y(t)$ is adjusted in amplitude and phase with equal quantities $k_{\rm M}$ and $\tau_{\rm M}$ for all frequencies which means that this is not a frequency-dependent equalization. Using the signal $z(t)$, one can differentiate between:

  • attenuation distortion and frequency–independant attenuation, as well as
  • phase distortion and frequency–independant delay.


The Distortion Power $P_{\rm D}$ is used to measure the strength of the linear distortion and is defined as:

$$P_{\rm D} = \min_{k_{\rm M}, \ \tau_{\rm M}} P_\varepsilon.$$

German description


Theoretical Background


Distortions refer to generally unwanted alterations of a message signal through a transmission system. Together with the strong stochastic effects (noise, crosstalk, etc.), they are a crucial limitation for the quality and rate of transmission.

Just as the intensity of noise can be assessed through

  • the Noise Power $P_{\rm N}$ and
  • the Signal–to–Noise Ratio (SNR) $\rho_{\rm N}$,


distortions can be quantified through

  • the Distortion Power $P_{\rm D}$ and
  • the Signal–to–Distortion Ratio (SDR)
$$\rho_{\rm D}=\frac{\rm Signal \ Power}{\rm Distortion \ Power} = \frac{P_x}{P_{\rm D} }.$$


Linear and Nonlinear Distortions


A distinction is made between linear and nonlinear distortions:

  • Nonlinear distortions occur, if at all times $t$ the nonlinear correlation $y = g(x) \ne {\rm const.} \cdot x$ exists between the signal values $x = x(t)$ at the input and $y = y(t)$ at the output, whereby $y = g(x)$ is defined as the system's nonlinear characteristic. By creating a cosine signal at the input with frequency $f_0$ the output signal includes $f_0$, as well as multiple harmonic waves. We conclude that new frequencies arise through nonlinear distortion.
For clarification of nonlinear distortions
Description of a linear system
  • Linear distortions occur, if the transmission channel is characterized by a frequency response $H(f) \ne \rm const.$ Various frequencies are attenuated and delayed differently. Characteristic of this is that although frequencies can disappear (for example, through a low–pass, a high–pass, or a band–pass), no new frequencies can arise.


In this applet only linear distortions are considered.


Description Forms for the Frequency Response


The generally complex valued frequency response can be represented as follows:

$$H(f) = |H(f)| \cdot {\rm e}^{-{\rm j} \hspace{0.05cm} \cdot \hspace{0.05cm} b(f)} = {\rm e}^{-a(f)}\cdot {\rm e}^{-{\rm j} \hspace{0.05cm} \cdot \hspace{0.05cm} b(f)}.$$

This results in the following description variables:

  • The absolute value $|H(f)|$ is called amplitude response and in logarithmic form attenuation function:
$$a(f) = - \ln |H(f)|\hspace{0.2cm}{\rm in \hspace{0.1cm}Neper \hspace{0.1cm}(Np) } = - 20 \cdot \lg |H(f)|\hspace{0.2cm}{\rm in \hspace{0.1cm}Decibel \hspace{0.1cm}(dB) }.$$
  • The phase function $b(f)$ indicates the negative frequency–dependent angle of $H(f)$ in the complex plane based on the real axis:
$$b(f) = - {\rm arc} \hspace{0.1cm}H(f) \hspace{0.2cm}{\rm in \hspace{0.1cm}Radian \hspace{0.1cm}(rad)}.$$


Low–pass of Order N


Attenuation function $a(f)$ and phase function $b(f)$ of a low–Pass of order $N$

The frequency response of a realizable low–pass (LP) of order $N$ is:

$$H(f) = \left [\frac{1}{1 + {\rm j}\cdot f/f_0 }\right ]^N\hspace{0.05cm}.$$

For example the RC low–pass is a first order low–pass. Consequently we can obtain

  • the attenuation function:
$$a(f) =N/2 \cdot \ln [1+( f/f_0)^2] \hspace{0.05cm},$$
  • the phase function:
$$b(f) =N \cdot \arctan( f/f_0) \hspace{0.05cm},$$
  • the attenuation factor for the frequency $f=f_i$:
$$\alpha_i =|H(f = f_i)| = [1+( f_i/f_0)^2]^{-N/2}$$
$$\Rightarrow \hspace{0.3cm} x(t)= A_i\cdot \cos(2\pi f_i t) \hspace{0.1cm}\rightarrow \hspace{0.1cm} y(t)= \alpha_i \cdot A_i\cdot \cos(2\pi f_i t)\hspace{0.05cm},$$
  • the phase delay for the frequency $f=f_i$:
$$\tau_i =\frac{b(f_i)}{2 \pi f_i} = \frac{N \cdot \arctan( f_i/f_0)}{2 \pi f_i}$$
$$\Rightarrow \hspace{0.3cm} x(t)= A_i\cdot \cos(2\pi f_i t) \hspace{0.1cm}\rightarrow \hspace{0.1cm} y(t)=A_i\cdot \cos(2\pi f_i (t- \tau_i))\hspace{0.05cm}.$$


High–pass of Order N


Attenuation function $a(f)$ and phase function $b(f)$ of a high–pass of order $N$

The frequency response of a realizable high–pass (HP) of order $N$ is:

$$H(f) = \left [\frac{ {\rm j}\cdot f/f_0 }{1 + {\rm j}\cdot f/f_0 }\right ]^N\hspace{0.05cm}.$$

For example the LC high pass is a first order high pass. Consequently we can obtain

  • the attenuation function:
$$a(f) =N/2 \cdot \ln [1+( f_0/f)^2] \hspace{0.05cm},$$
  • the phase function:
$$b(f) =-N \cdot \arctan( f_0/f) \hspace{0.05cm},$$
  • the attenuation factor for the frequency $f=f_i$:
$$\alpha_i =|H(f = f_i)| = [1+( f_0/f_i)^2]^{-N/2}$$
$$\Rightarrow \hspace{0.3cm} x(t)= A_i\cdot \cos(2\pi f_i t) \hspace{0.1cm}\rightarrow \hspace{0.1cm} y(t)= \alpha_i \cdot A_i\cdot \cos(2\pi f_i t)\hspace{0.05cm},$$
  • the phase delay for the frequency $f=f_i$:
$$\tau_i =\frac{b(f_i)}{2\pi f_i} = \frac{-N \cdot \arctan( f_0/f_i)}{2\pi f_i}$$
$$\Rightarrow \hspace{0.3cm} x(t)= A_i\cdot \cos(2\pi f_i t) \hspace{0.1cm}\rightarrow \hspace{0.1cm} y(t)=A_i\cdot \cos(2\pi f_i (t- \tau_i))\hspace{0.05cm}.$$


Phase function $b(f)$ of high–pass and low–pass

$\text{Example:}$  This graphic shows the phase function $b(f)$ with the cut–off frequency $f_0 = 1\ \rm kHz$ and order $N=1$

  • of a low–pass (green curve),
  • of a high–pass (violet curve).


The input signal is sinusoidal with frequency $f_{\rm S} = 1.25\ {\rm kHz}$ whereby this signal is only turned on at $t=0$:

$$x(t) = \left\{ \begin{array}{l} \hspace{0.75cm}0 \\ \sin(2\pi \cdot f_{\rm S} \cdot t ) \\ \end{array} \right.\quad\begin{array}{l} (t < 0), \\ (t>0). \\ \end{array}$$

The left graphic shows the signal $x(t)$. The dashed line marks the first zero at $t = T_0 = 0.8\ {\rm ms}$. The other two graphics show the output signals $y_{\rm LP}(t)$ und $y_{\rm HP}(t)$ of low–pass and high–pass, whereby the change in amplitude was balanced in both cases.

Input signal $x(t)$ (enframed in blue) as well as output signals $y_{\rm LP}(t)$ ⇒   green and $y_{\rm HP}(t)$ ⇒   magenta
  • The first zero of the signal $y_{\rm LP}(t)$ after the low–pass is delayed by $\tau_{\rm LP} = 0.9/(2\pi) \cdot T_0 \approx 0.115 \ {\rm ms}$ compared to the first zero of $x(t)$   ⇒   marked with green arrow, whereby $b_{\rm LP}(f/f_{\rm S} = 0.9 \ {\rm rad})$ was considered.
  • In contrast, the phase delay of the high–pass is negative: $\tau_{\rm HP} = -0.67/(2\pi) \cdot T_0 \approx -0.085 \ {\rm ms}$ and therefore the first zero of $y_{\rm HP}(t)$ occurs before the dashed line.
  • Following this transient response, in both cases the zero crossings again come in the raster of the period duration $T_0 = 0.8 \ {\rm ms}.$


Remark: The shown signals were created using the interactive applet Causal systems – Laplace transform.

Attenuation and Phase Distortions


Requirements for a non–distorting channel

The adjacent figure shows

  • the even attenuation function $a(f)$   ⇒   $a(-f) = a(f)$, and
  • the uneven function curve $b(f)$   ⇒   $b(-f) = -b(- f)$


of a non–distorting channel. One can see:

  • In a distortion–free system the attenuation function $a(f)$ must be constant between$f_{\rm U}$ and $f_{\rm O}$ around the carrier frequency $f_{\rm T}$, where the input signal exists   ⇒   $X(f) \ne 0$.
  • From the specified constant attenuation value $6 \ \rm dB$ follows for the amplitude response $|H(f)| = 0.5$   ⇒   the signal values of all frequencies are thus halved by the system   ⇒   no attenuation distortions.
  • In addition, in such a system, the phase function $b(f)$ between $f_{\rm U}$ and $f_{\rm O}$ must increase linearly with the frequency. As a result, all frequency components are delayed by the same phase delay $τ$   ⇒   no phase distortion.
  • The delay $τ$ is fixed by the slope of $b(f)$. The phase function $b(f) \equiv 0$ would result in a delay–less system   ⇒   $τ = 0$.


The following summary considers that – in this applet – the input signal is always the sum of two harmonic oscillations,

$$x(t) = x_1(t) + x_2(t) = A_1\cdot \cos\left(2\pi f_1\cdot t- \varphi_1\right)+A_2\cdot \cos\left(2\pi f_2\cdot t- \varphi_2\right), $$

and therefore the channel influence is fully described by the attenuation factors $\alpha_1$ and $\alpha_2$ as well as the phase delays $\tau_1$ and $\tau_2$:

$$y(t) = \alpha_1 \cdot x_1(t-\tau_1) + \alpha_2 \cdot x_2(t-\tau_2).$$

$\text{Summary:}$ 

  • A signal $y(t)$ is only distortion–free compared to $x(t)$ if $\alpha_1 = \alpha_2= \alpha$   and   $\tau_1 = \tau_2= \tau$   ⇒   $y(t) = \alpha \cdot x(t-\tau)$.
  • Attenuation distortions occur when $\alpha_1 \ne \alpha_2$. If $\alpha_1 \ne \alpha_2$ and $\tau_1 = \tau_2$, then there are exclusively attenuation distortions.
  • Phase distortions occur when $\tau_1 \ne \tau_2$. If $\tau_1 \ne \tau_2$ and $\alpha_1 = \alpha_2$, then there are exclusively phase distortions.



Exercises

Exercises verzerrungen.png
  • First choose an exercise number.
  • An exercise description is displayed.
  • Parameter values are adjusted to the respective exercises.
  • Click „Hide solution” to display the solution.


Number „0” is a „Reset” button:

  • Sets parameters to initial values (when loading the page).
  • Displays a „Reset text” to describe the applet further.


(1)   We consider the parameters $A_1 = 0.8\ {\rm V}, \ A_2 = 0.6\ {\rm V}, \ f_1 = 0.5\ {\rm kHz}, \ f_2 = 1.5\ {\rm kHz}, \ \varphi_1 = 90^\circ, \ \varphi_2 = 30^\circ$ for the input signal $x(t)$.

Calculate the signal's period duration $T_0$ and power $P_x$. Can you read the value for $P_x$ off the applet?


$\hspace{1.0cm}\Rightarrow\hspace{0.3cm}T_0 = \big [\hspace{-0.1cm}\text{ greatest common divisor }(0.5 \ {\rm kHz}, \ 1.5 \ {\rm kHz})\big ]^{-1}\hspace{0.15cm}\underline{ = 2.0 \ {\rm ms}};$

$\hspace{1.85cm} P_x = A_1^2/2 + A_2^2/2 \hspace{0.15cm}\underline{= 0.5 \ {\rm V^2}} = P_\varepsilon\text{, if }\hspace{0.15cm}\underline{k_{\rm M} = 0} \ \Rightarrow \ z(t) \equiv 0$.

(2)  Vary $\varphi_2$ between $\pm 180^\circ$ while keeping all other parameters from Exercise (1). How does the value of $T_0$ and $P_x$ change?


$\hspace{1.0cm}\Rightarrow\hspace{0.3cm}\text{No changes:}\hspace{0.2cm}\hspace{0.15cm}\underline{ T_0 = 2.0 \ {\rm ms}; \hspace{0.2cm} P_x = 0.5 \ {\rm V^2}}$.

(3)   Vary $f_2$ between $0 \le f_2 \le 10\ {\rm kHz}$ while keeping all other parameters from Exercise (1). How does the value of $P_x$ change?


$\hspace{1.0cm}\Rightarrow\hspace{0.3cm}\text{No changes if }f_2 \ne 0\text{ and } f_2 \ne f_1\text{:}\hspace{0.3cm} \hspace{0.15cm}\underline{P_x = 0.5 \ {\rm V^2}}\text{.} \hspace{0.2cm} T_0 \text{ changes if }f_2\text{is not a multiple of }f_1$.

$\hspace{1.85cm}\text{If }f_2 = 0\text{:}\hspace{0.2cm} P_x = A_1^2/2 + A_2^2\hspace{0.15cm}\underline{ = 0.68 \ {\rm V^2}}$. $\hspace{3cm}$

$\hspace{1.85cm}\text{If }f_2 = f_1\text{:}\hspace{0.2cm} P_x = [A_1\cos(\varphi_1) + A_2\cos(\varphi_2)]^2/2 + [A_1\sin(\varphi_1) + A_2\sin(\varphi_2)]^2/2 \text{.} $

$\hspace{1.85cm}\text{With } \varphi_1 = 90^\circ, \ \varphi_2 = 30^\circ\text{:}\hspace{0.3cm}\hspace{0.15cm}\underline{ P_x = 0.74 \ {\rm V^2}}\text{.} $

(4)   Keeping the previous input signal $x(t)$, set following parameters

$\alpha_1 = \alpha_2 = 0.5, \ \tau_1 = \tau_2 = 0.5\ {\rm ms}$, $k_{\rm M} = 1 \text{ and } \tau_{\rm M} = 0$ .
Are there linear distortions? Calculate the received power $P_y$ and the power $P_\varepsilon$ of the differential signal $\varepsilon(t) = z(t) - x(t)$.


$\hspace{1.0cm}\Rightarrow \hspace{0.3cm}\hspace{0.15cm}\underline{ y(t) = 0.5 \cdot x(t- 1\ {\rm ms})}\text{ is only attenuated and delayed, but not distorted.}$

$\hspace{1.85cm}\text{Received power:}\hspace{0.2cm} P_y = (A_1/2)^2/2 + (A_2/2)^2/2\hspace{0.15cm}\underline{ = 0.125 \ {\rm V^2}}\text{. } P_\varepsilon \text{ is significantly larger:} \hspace{0.1cm} \hspace{0.15cm}\underline{P_\varepsilon = 0.625 \ {\rm V^2}}.$

(5)   With the same settings as in Exercise (4), vary the matching parameters $k_{\rm M} \text{ and } \tau_{\rm M}$. How big is the distortion power $P_{\rm D}$?


$\hspace{1.0cm}\Rightarrow \hspace{0.3cm} P_{\rm D}\text{ is equal to }P_\varepsilon \text{ when using the ideal matching parameters:} \hspace{0.2cm}k_{\rm M} = 2 \text{ and } \tau_{\rm M}=T_0 - 0.5\ {\rm ms} = 1.5\ {\rm ms}$

$\hspace{1.0cm}\Rightarrow \hspace{0.3cm}z(t) = x(t)\hspace{0.3cm}\Rightarrow \hspace{0.3cm}\varepsilon(t) = 0\hspace{0.3cm}\Rightarrow \hspace{0.3cm}P_{\rm D}\hspace{0.15cm}\underline{ = P_\varepsilon = 0} \hspace{0.3cm}\Rightarrow \hspace{0.3cm}\text{Neither attenuation nor phase distortion.}$

(6)   The channel parameters are now set to: $\alpha_1 = 0.5, \hspace{0.15cm}\underline{\alpha_2 = 0.2}, \ \tau_1 = \tau_2 = 0.5\ {\rm ms}$. Calculate the distortion power $P_{\rm D}$ and the Signal-to-Distortion ratio $(\rm SDR) \ \rho_{\rm D}$.


$\hspace{1.0cm}\Rightarrow \hspace{0.3cm} P_{\rm D} = P_\varepsilon \text{ when using the best matching parameters:} \hspace{0.2cm}\hspace{0.15cm}\underline{k_{\rm M} = 2.24} \text{ and } \hspace{0.15cm}\underline{\tau_{\rm M} = 1.5\ {\rm ms} }\text{:} \hspace{0.2cm}\hspace{0.15cm}\underline{P_{\rm D} = 0.059 \ {\rm V^2}}$.

$\hspace{1.85cm}\text{Attenuation distortions only.} \hspace{0.3cm}\text{Signal-to-Distortion-Ratio}\ \hspace{0.15cm}\underline{\rho_{\rm D} = P_x/P_\varepsilon \approx 8.5}$.

(7)   The channel parameters are now set to: $\alpha_1 = \alpha_2 = 0.5, \ \tau_1 \hspace{0.15cm}\underline{= 2\ {\rm ms} }, \ \tau_2 = 0.5\ {\rm ms}$. Calculate the distortion power $P_{\rm D}$ and the the Signal-to-Distortion ratio $\rho_{\rm D}$.


$\hspace{1.0cm}\Rightarrow \hspace{0.3cm} P_{\rm D} = P_\varepsilon \text{when using the best matching parameters:} \hspace{0.2cm}\hspace{0.15cm}\underline{k_{\rm M} = 1.84} \text{ and } \tau_{\rm M}\hspace{0.15cm}\underline{ = 0.15\ {\rm ms} }\text{:} \hspace{0.2cm}\hspace{0.15cm}\underline{P_{\rm D} = 0.071 \ {\rm V^2}}$.

$\hspace{1.85cm}\text{Phase distortions only.} \hspace{0.3cm}\text{Signal-to-Distortion-Ratio}\ \hspace{0.15cm}\underline{\rho_{\rm D} = P_x/P_\varepsilon \approx 7}$.

(8)   The channel parameters are now set to: $\hspace{0.15cm}\underline{\alpha_1 = 0.5} , \hspace{0.15cm}\underline{\alpha_2 = 0.2} , \ \hspace{0.15cm}\underline{\tau_1= 0.5\ {\rm ms} }, \ \hspace{0.15cm}\underline{\tau_2 = 0.3\ {\rm ms} }$. Are there attenuation distortions? Are there phase distortions? How can $y(t)$ be approximated? Hint: $\cos(3x) = 4 \cdot \cos^3(x) - 3\cdot \cos(x).$


$\hspace{1.0cm}\Rightarrow\hspace{0.3cm} \text{Both attenuation and phase distortions, because }\alpha_1 \ne \alpha_2\text{ and }\tau_1 \ne \tau_2$.

$\hspace{1.85cm}y(t) = y_1(t) + y_2(t)\ \Rightarrow \ y_1(t) = A_1 \cdot \alpha_1 \cdot \sin[2\pi f_1\ (t- 0.5\ \rm ms)] = -0.4 \ {\rm V} \cdot \cos(2\pi f_1 t)$

$\hspace{1.85cm} y_2(t) = \alpha_2 \cdot x_2(t- \tau_2) \text{ mit }x_2(t) = A_2 \cdot \cos[2\pi f_2\ (t- 30^\circ)] \approx A_2 \cdot \cos[2\pi f_2\ (t- 1/36 \ \rm ms)]$

$\hspace{1.85cm} \Rightarrow \ y_2(t) = 0.12 \ {\rm V} \cdot \cos[2\pi f_2\ (t- 0.328 \ {\rm ms})] \approx -0.12 \ { \rm V} \cdot \cos[2\pi f_2t] $.

$\hspace{1.85cm} \Rightarrow \ y(t) = y_1(t) + y_2(t) \approx -0.4 \ {\rm V} \cdot [\cos(2\pi \cdot f_1\cdot t) + 1/3 \cdot \cos(2\pi \cdot 3 f_1 \cdot t) = -0.533 \ {\rm V} \cdot \cos^3(2\pi f_1 t)$.

(9)   Using the parameters from Exercise (8), calculate the distortion power $P_{\rm D}$ and the the Signal-to-Distortion ratio $\rho_{\rm D}$.


$\hspace{1.0cm}\text{Best possible adaptation:} \hspace{0.2cm}\hspace{0.15cm}\underline{k_{\rm M} = 1.96} \text{, } \hspace{0.15cm}\underline{\tau_{\rm M} = 1.65\ {\rm ms} }\text{:} \hspace{0.2cm}\hspace{0.15cm}\underline{P_{\rm D} = 0.15 \ {\rm V^2} },\hspace{0.1cm}\hspace{0.15cm}\underline{\rho_{\rm D} = 0.500/0.15 \approx 3.3}$.

(10)  Now we set $A_2 = 0$ and $A_1 = 1\ {\rm V}, \ f_1 = 1\ {\rm kHz}, \ \varphi_1 = 0^\circ$. The channel is a Low-pass of order 1 $\underline{(f_0 = 1\ {\rm kHz})}$.
Are there any attenuation and/or phase distortions? Calculate the channel coefficients $\alpha_1$ and $\tau_1$.


$\hspace{1.0cm}\text{At only one frequency there are neither attenuation nor phase distortions.}$ $\hspace{1.0cm}\text{Attenuation factor for }f_1=f_0\text{ and }N=1\text{: }\alpha_1 =|H(f = f_1)| = [1+( f_1/f_0)^2]^{-N/2} = 2^{-1/2}= 1/\sqrt{2}\hspace{0.15cm}\underline{=0.707},$ $\hspace{1.0cm}\text{Phase factor for }f_1=f_0\text{ and }N=1\text{: }\tau_1 = N \cdot \arctan( f_1/f_0)/(2 \pi f_1)=\arctan( 1)/(2 \pi f_1) =1/(8f_1) \hspace{0.15cm}\underline{=0.125 \ \rm ms}.$

(11)   How do the channel parameters change when using a Low-pass of order 2 compared to a Low-pass of order 1 $(f_0 = 1\ {\rm kHz})$?


$\hspace{1.0cm}\alpha_1 = 0.707^2 = 0.5$ and $\tau_1 = 2 \cdot 0.125 = 0.25 \ {\rm ms}$.

$\hspace{1.0cm}\text{The signal }y(t)\text{ is only half as big as }x(t)\text{ and is retarded: The cosine turns into a sine function}$.

(12)   What differences arise when using a High-pass of order 2 compared to a Low-pass of order 2 $(f_0 = 1\ {\rm kHz})$?


$\hspace{1.0cm}\text{Since }f_1 = f_0\text{ the attenuation factor }\alpha_1 = 0.5\text{ stays the same and }\tau_1 = -0.25 \ {\rm ms}\text{ which means:}$

$\hspace{1.0cm}\text{The signal }y(t)\text{ is also only half as big as }x(t)\text{ and precedes it: The cosine turns into the Minus–sine function}$.

(13)   What differences at the signal $y(t)$ can be observed between the Low-pass and the High-pass of order 2 $(f_0 = 1\ {\rm kHz})$ when you start with the initial input signal according to Exercise (1) and continuously raise $f_2$ up to $10 \ \rm kHz$ ?


$\hspace{1.0cm}\text{With the Low-pass the second term is increasingly suppressed. For }f_2 = 10 \ {\rm kHz}\text{: }y_{\rm LP}(t) \approx 0.8 \cdot x_1(t-0.3 \ \rm ms).$

$\hspace{1.0cm}\text{With the High-pass however the second term dominates. For }f_2 = 10 \ {\rm kHz}\text{: }y_{\rm HP}(t) \approx 0.2 \cdot x_1(t+0.7 \ {\rm ms}) + x_2(t).$

Applet Manual

Handhabung verzerrungen.png


    (A)     Parameter selection for input signal $x(t)$ per slider: Amplitude, frequency, phase values

    (B)     Preselection for channel parameters per slider: Low-pass or High-pass

    (C)     Selction of channel parameters per slider: Dämpfungsfaktoren und Phasenlaufzeiten

    (D)     Selection of channel parameters for High and Low pass: Order$n$, cut-off-frequency $f_0$

    (E)     Selection of matching parameters $k_{\rm M}$ and $\varphi_{\rm M}$

    (F)     Selection of the signals to be displayed: $x(t)$, $y(t)$, $z(t)$, $\varepsilon(t)$, $\varepsilon^2(t)$

    (G)     Graphic display of the signals

    (H)     Enter the time $t_*$ for the numeric output

    ( I )     numeric output of the signal values $x(t_*)$, $y(t_*)$, $z(t_*)$ and $\varepsilon(t_*)$

    (J)     Numeric output of the main result $P_\varepsilon$

    (K)     Save and reall parameters

    (L)     Exercises: Exercise selection, description and solution

    (M)     Variation possibilities for the graphic display

$\hspace{1.5cm}$Zoom–functions „$+$” (scale up), „$-$” (scale down) und $\rm o$ (reset)

$\hspace{1.5cm}$Move with „$\leftarrow$” (section to the left, ordinate to the right), „$\uparrow$” „$\downarrow$” und „$\rightarrow$”

$\hspace{1.5cm}$'Other options:

$\hspace{1.5cm}$Hold shift and scroll: Zoom in on/out of coordinate system,

$\hspace{1.5cm}$Hold shift and left click: Move the coordinate system.

About the Authors

This interactive calculation was designed and realized at the Lehrstuhl für Nachrichtentechnik of the Technische Universität München.

  • The original version was created in 2005 by Bettina Hirner as part of her Diploma thesis using „FlashMX–Actionscript” (Supervisor: Günter Söder ).
  • In 2018 this Applet was redesigned and updated to „HTML5” by Jimmy He as part of his Bachelor's thesis (Supervisor: Tasnád Kernetzky) .

Once again: Open Applet in new Tab

Open Applet in new Tab