Lineare Nyquistentzerrung

Aus LNTwww
Wechseln zu:Navigation, Suche

Struktur des optimalen Nyquistentzerrers


In diesem Abschnitt gehen wir von folgendem Blockschaltbild eines Binärsystems aus.

Blockschaltbild des optimalen Nyquistentzerrers

Hierzu ist anzumerken:

  • Die Diracquelle liefert die zu übertragende Nachricht (Amplitudenkoeffizienten aν) in binärer bipolarer Form. Sie wird als redundanzfrei vorausgesetzt.
  • Die Sendeimpulsform gs(t) wird durch den Senderfrequenzgang HS(f) berücksichtigt. Bei allen Beispielen ist HS(f) = si(π f T) zugrunde gelegt.
  • Bei manchen Herleitungen werden Sender und Kanal – hierfür wird meist ein Koaxialkabel angenommen – durch den gemeinsamen Frequenzgang HSK(f) = HS(f) · HK(f) zusammengefasst.
  • Das Empfangsfilter HE(f) setzt sich multiplikativ aus dem Matched–Filter HMF(f) = HSK(f) und dem Transversalfilter HTF(f) zusammen, zumindest kann es gedanklich so aufgespalten werden.
  • Der Gesamtfrequenzgang zwischen der Diracquelle und dem Schwellenwertentscheider soll die erste Nyquistbedingung erfüllen. Es muss also gelten:
HS(f)HK(f)HMF(f)HTF(f)=HNyq(f).
  • Mit dieser Bedingung ergibt sich die maximale Augenöffnung (keine Impulsinterferenzen). Deshalb gelten für das Detektions–SNR und den Systemwirkungsgrad bei binärer Signalisierung:
ρd=2s20Tσ2d=2s20TN01σ2d,normη=ρdρd,max=ρd2s20T/N0=1σ2d,norm.
  • Die Optimierungsaufgabe beschränkt sich also darauf, das Empfangsfilter HE(f) so zu bestimmen, dass die normierte Rauschleistung vor dem Entscheider den kleinstmöglichen Wert annimmt:
σ2d,norm=σ2dN0/T=T+|HE(f)|2df!=Minimum.
  • Wir bezeichnen die Konfiguration als Optimale Nyquistentzerrung (ONE). Obwohl diese auch – und besonders effektiv – bei Mehrstufensystemen anwendbar ist, setzen wir zunächst M = 2.

Wirkungsweise des Transversalfilters (1)


Verdeutlichen wir uns zunächst die Aufgabe des symmetrischen Transversalfilters

HTF(f)hTF(t)=+Nλ=Nkλδ(tλT).

N gibt die Ordnung des Filters an. Für die Filterkoeffizienten gilt k–λ = kλ. Dieses Filter ist somit durch die Koeffizienten k0, ... , kN vollständig bestimmt. Die Grafik zeigt ein Filter zweiter Ordnung (N = 2).

Transversalfilter als Teil des optimalen Nyquistentzerrers

Für den Eingangsimpuls gm(t) setzen wir ohne Einschränkung der Allgemeingültigkeit voraus, dass dieser

  • symmetrisch um t = 0 ist (Ausgang des Matched–Filters),
  • zu den Zeiten νT und –νT den Wert gm(ν) besitzt.

Damit sind die Eingangsimpulswerte:

...,gm(3),gm(2),gm(1),gm(0),gm(1),gm(2),gm(3),....

Für den Detektionsgrundimpuls gd(t) am Filterausgang ergeben sich demzufolge zu den Zeitpunkten νT mit den Abkürzungen g0 = gd(t = 0), g1 = gd(t = ±T), g2 = gd(t = ±2T) folgende Werte:

t=0:g0=k0gm(0)+k12gm(1)+k22gm(2),

t=±T:g1=k0gm(1)+k1[gm(0)+gm(2)]+k2[gm(1)+gm(3)],
t=±2T:g2=k0gm(2)+k1[gm(1)+gm(3)]+k2[gm(2)+gm(4)].

Aus diesem System mit drei linear unabhängigen Gleichungen kann man nun die Filterkoeffizienten k0, k1 und k2 so bestimmen, dass der Detektionsgrundimpuls gd(t) durch die normierten Stützstellen

...,g3,g2=0,g1=0,g0=1,g1=0,g2=0,g3,...

vollständig gegeben ist. Auf der nächsten Seite wird die Optimierung der Filterkoeffizienten an einem einfachen Beispiel verdeutlicht.