Lineare zeitinvariante Systeme

Aus LNTwww
Wechseln zu:Navigation, Suche

Kurzer Überblick

Beschrieben wird aufbauend auf dem Buch  "Signaldarstellung",  wie man den Einfluss eines Filters auf deterministische Signale mathematisch erfassen kann:

  1. Die Systemtheorie analysiert einen Vierpol  $($"System"$)$  anhand von Ursache   ⇒   $[$Eingang   $ X(f)\bullet\!\!-\!\!-\!\!\circ\, x( t )]$  und Wirkung   ⇒   $[$Ausgang  $ Y(f)\bullet\!\!-\!\!-\!\!\circ\, y( t )]$.
  2. Beschreibungsgröße im Frequenzbereich ist der  "Frequenzgang"  $ H(f)=Y(f)/X(f)$,  im Zeitbereich die  "Impulsantwort"  $ h(t)$,  wobei  $ y(t)=x(t)\star h(t)$.
  3. Systemverzerrungen   ⇒   $ y(t)\ne K \cdot x(t - \tau)$;  verzerrungsfreies System:  Ausgang und Eingang unterscheiden sich durch Dämpfung/Verstärkung und Laufzeit.
  4. Lineare Verzerrungen   ⇒   $ Y(f)=X(f)\cdot H(f)$  $($möglicherweise reversibel$)$;  nichtlineare Verzerrungen"   ⇒   Entstehung neuer Frequenzen  $($irreversibel$)$.
  5. Besonderheiten kausaler Systeme   ⇒   $ h(t<0)\equiv 0$;  Hilbert-Transformation,  Laplace-Transformation; Laplace-Rücktransformation   ⇒   Residuensatz.
  6. Einige Ergebnisse der Leitungstheorie;  Koaxialkabelsysteme   ⇒   "Weißes Rauschen";  Kupfer-Doppeladern   ⇒   dominant ist  "Nahnebensprechen".


Der Filtereinfluss auf ein Zufallssignal wird erst später im letzten Kapitel des Buches  "Stochastische Signaltheorie"  behandelt.

⇒   Hier zunächst eine  »Inhaltsübersicht«  anhand der  »vier Hauptkapitel«  mit insgesamt  »zwölf Einzelkapiteln«  und  »93 Abschnitten«.


Inhalt

Aufgaben und Multimedia

Neben diesen Theorieseiten bieten wir auch Aufgaben und multimediale Module zu diesem Thema an,  die zur Verdeutlichung des Lehrstoffes beitragen könnten:

$(1)$    $\text{Aufgaben}$

$(2)$    $\text{Lernvideos}$

$(3)$    $\text{Applets}$ 


Weitere Links: