Aufgabe 2.4Z: Kennlinienvermessung
Von einem nichtlinearen System ist bekannt, dass die Kennlinie wie folgt dargestellt werden kann:
- $$y(t) = c_1 \cdot x(t) + c_2 \cdot x^2(t).$$
Da die Verzerrungen nichtlinear sind, ist kein Frequenzgang $H(f)$ angebbar.
Zur Bestimmung des dimensionslosen Koeffizienten $c_1$ sowie des quadratischen Koeffizienten $c_2$ werden nun verschiedene Rechteckimpulse $x(t)$ – gekennzeichnet durch die Amplitude $A_x$ und Breite $T_x$ – an den Eingang gelegt und jeweils die Impulsamplitude $A_y$ am Ausgang gemessen.
Die ersten drei Versuchen ergeben folgende Werte:
- $A_x = 1 \ {\rm V}, \; \; T_x = 8 \ {\rm ms}$ : $A_y = 0.55 \ {\rm V}$,
- $A_x = 2 \ {\rm V}, \; \; T_x = 4 \ {\rm ms}$ : $A_y = 1.20 \ {\rm V}$,
- $A_x = 3 \ {\rm V}, \; \; T_x = 2 \ {\rm ms}$ : $A_y = 1.95 \ {\rm V}$.
Bei den Teilaufgaben (3) und (4) sei das Eingangssignal $x(t)$ eine harmonische Schwingung, da nur für eine solche ein Klirrfaktor angegeben werden kann.
Dagegen wird für die Teilaufgabe (5) ein Dreieckimpuls mit Amplitude $A_x = 3 \ {\rm V}$ und der einseitigen Impulsdauer $T_x = 2 \ {\rm ms}$ betrachtet:
- $$x(t) = A_x \cdot \big[ 1 - {|t|}/{T_x}\big] $$
Hinweise:
- Die Aufgabe gehört zum Kapitel Nichtlineare Verzerrungen.
- Im Fragenkatalog werden folgende Abkürzungen benutzt:
- $$y_1(t) = c_1 \cdot x(t), \hspace{0.5cm} y_2(t) = c_2 \cdot x^2(t).$$
Fragebogen
Musterlösung
- Ist der Eingangsimpuls $x(t)$ rechteckförmig, so ist auch $x^2(t)$ ein Rechteck mit Höhe $A_x^2$ im Bereich von $0$ bis $T_x$ und außerhalb $0$.
- Auch das gesamte Ausgangssignal $y(t)$ ist somit rechteckförmig mit der Amplitude
- $$A_y= c_1 \cdot A_x + c_2 \cdot A_x^2 .$$
- Für die Impulsdauer gilt $T_y = T_x$.
(2) Mit den beiden ersten Parametersätzen kann folgendes lineares Gleichungssystem angegeben werden:
- $$c_1 \cdot 1\,{\rm V} + c_2 \cdot (1\,{\rm V})^2 = 0.55\,{\rm V},$$
- $$c_1 \cdot 2\,{\rm V} + c_2 \cdot (2\,{\rm V})^2 = 1.20\,{\rm V}.\hspace{0.05cm}$$
Durch Multiplikation der ersten Gleichung mit $-2$ und Addition der beiden Gleichungen erhält man:
- $$c_2 \cdot 2\,{\rm V}^2 = 0.1\,{\rm V} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} c_2 \hspace{0.15cm}\underline{= 0.05\,{1/\rm V}}.$$
Der Linearkoeffizient ist somit $c_1 \hspace{0.15cm}\underline{= 0.5}.$
Der dritte Parametersatz kann genutzt werden, um das Ergebnis zu kontrollieren:
- $$c_1 \cdot 3\,{\rm V} + c_2 \cdot (3\,{\rm V})^2 = 0.5 \cdot 3\,{\rm V}+ 0.05 \ {1}/{\rm V}\cdot 9\,{\rm V}^2 = 1.95\,{\rm V}.$$
(3) Die Angabe eines Klirrfaktors bedingt die Verwendung einer harmonischen Schwingung am Eingang.
Ist $X_+(f) = 1 \ {\rm V} \cdot \delta (f - f_0)$, so lautet das Spektrum des analytischen Signals am Ausgang:
- $$ Y_{+}(f)={c_2}/{2}\cdot A_x^2 \cdot \delta(f) + c_1\cdot A_x \cdot \delta(f- f_0)+ {c_2}/{2}\cdot A_x^2 \cdot \delta(f- 2 f_0). $$
Die Diracfunktion bei $f = 0$ folgt aus der trigonometrischen Umformung $\cos^2(\alpha) = 1/2 + 1/2 \cdot \cos(\alpha).$
Mit $A_1 = c_1 \cdot A_x = 0.5 \ {\rm V} $ und $A_2 = (c_2/2) \cdot A_x^2 = 0.025 \ {\rm V}^2 $ ergibt sich somit für den Klirrfaktor:
- $$K= \frac{A_2}{A_1}= \frac{c_2/2 \cdot A_x}{c_1 }= \frac{0.025}{0.5} \hspace{0.15cm}\underline{= 5 \%}.$$
(4) Entsprechend der Musterlösung zur letzten Teilaufgabe ist $K$ proportional zu $A_x$. Deshalb erhält man nun $K \hspace{0.15cm}\underline{= 15 \%}.$
(5) Nun lautet das Ausgangssignal:
- $$y(t)= c_1\cdot A_x \cdot \left( 1 - {|\hspace{0.05cm}t\hspace{0.05cm}|}/{T_x}\right) +\hspace{0.1cm} {c_2}\cdot A_x^2 \cdot \left( 1 - {|\hspace{0.05cm}t\hspace{0.05cm}|}/{T_x}\right)^2.$$
Zum Zeitpunkt $t = 0$ bzw. $t = T_x/2$ treten folgende Werte auf:
- $$y(t=0) = c_1\cdot A_x + {c_2}\cdot A_x^2 \hspace{0.15cm}\underline{= 1.95\,{\rm V}},$$
- $$y(t=T_x/2) = c_1\cdot A_x \cdot {1}/{2} + \hspace{0.1cm}{c_2}\cdot A_x^2 \cdot {1}/{4}= 0.75\,{\rm V}+ 0.1125\,{\rm V} \hspace{0.15cm}\underline{ = 0.8625\,{\rm V}}.$$