Aufgabe 4.4: Zeigerdiagramm bei ZSB-AM
Wir gehen von einem cosinusförmigen Quellensignal $q(t)$ mit der Amplitude $A_N$ = 0.8 V und der Frequenz $f_N$ = 10 kHz aus. Die Frequenzumsetzung erfolgt mittels Zweiseitenband–Amplitudenmodulation mit Träger, abgekürzt ZSB–AM. Das modulierte Signal $s(t)$ lautet mit dem (normierten) Träger $z(t) = \text{cos}(\omega T \dot t)$ und dem Gleichanteil $q_0$ = 1 V:
$$\begin{align*} s(t) & = \left(q_0 + q(t)\right) \cdot z(t)= \left({\rm 1 \hspace{0.05cm} V} + {\rm 0.8 \hspace{0.05cm}V}\cdot {\cos} ( \omega_{\rm N}\cdot t)\right) \cdot {\cos} ( \omega_{\rm T}\cdot t) = \\ & = q_0 \cdot {\cos} ( \omega_{\rm T}\cdot t) + \frac{A_{\rm N}}{2} \cdot {\cos} ( (\omega_{\rm T}+ \omega_{\rm N}) \cdot t) + \frac{A_{\rm N}}{2} \cdot {\cos} ( (\omega_{\rm T}- \omega_{\rm N}) \cdot t).\end{align*}$$
Der erste Term beschreibt den Träger, der zweite Term das sogenannte obere Seitenband (OSB) und der letzte Term das untere Seitenband (USB). Die Skizze zeigt das Spektrum $S_+(f)$ des dazugehörigen analytischen Signals für $f_T = 50$ kHz. Man erkennt den Träger (rot), das obere Seitenband (blau) und das untere Seitenband (grün). In der Teilaufgabe 5) ist nach dem Betrag von $s_+(t)$ gefragt. Hierunter versteht man die Länge des resultierenden Zeigers.
Hinweise:
- Die Aufgabe gehört zum Kapitel Analytisches Signal und zugehörige Spektralfunktion.
- Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
- Für die Spektralfunktion des analytischen Signals gilt:
- $$ X_{\rm +}(f)= \left[1 + {\rm sign}(f)\right] \cdot X(f).$$
Hinweis: Diese Aufgabe bezieht sich auf die theoretischen Grundlagen von Kapitel 4.2. Sie können Ihre Lösung mit dem folgenden Interaktionsmodul überprüfen: Zeigerdiagramm – Darstellung des analytischen Signals
Fragebogen
Musterlösung
$$s_{+}(t) = {\rm 1 \hspace{0.05cm} V} \cdot {\rm e}^{{\rm j}\hspace{0.05cm} \omega_{\rm 50}\hspace{0.05cm} t } + {\rm 0.4 \hspace{0.05cm} V} \cdot {\rm e}^{{\rm j}\hspace{0.05cm} \omega_{\rm 60} \hspace{0.05cm} t }+ {\rm 0.4 \hspace{0.05cm} V} \cdot {\rm e}^{{\rm j}\hspace{0.05cm} \omega_{\rm 40}\hspace{0.05cm} t }.$$
Der Ausdruck beschreibt die Summe dreier Zeiger, die mit unterschiedlichen Winkelgeschwindigkeiten drehen. In obiger Gleichung bedeutet z. B. $\omega_{60} = 2\pi (f_T + f_N) = 2\pi \cdot 60$ kHz. Zum Zeitpunkt $t$ = 0 zeigen alle drei Zeiger in Richtung der reellen Achse (siehe linke Grafik), und man erhält den rein reellen Wert $s_+(t = 0) =$ 1.8 V.
2. Die erste Aussage ist richtig und ergibt sich aus der Hilbert-Transformation. Dagegen stimmen die nächsten beiden Aussagen nicht: $s_+(t)$ ist stets eine komplexe Zeitfunktion mit Ausnahme des Grenzfalls $s(t)$ = 0. Jede komplexe Funktion hat jedoch zu einigen Zeitpunkten auch rein reelle Werte. Der Zeigerverbund dreht immer in mathematisch positiver Richtung. Überschreitet der Summenvektor die reelle Achse, so verschwindet zu diesem Zeitpunkt der Imaginärteil und $s_+(t)$ ist rein reell.
3. Die Periodendauer des Trägersignals beträgt $T_0 = 1/f_T =$ 20 μs. Nach $t$ = 5 μs hat sich der Träger somit um 90° gedreht (siehe mittlere Grafik). Der blaue Zeiger (OSB) dreht um 20% schneller, der grüne (USB) um 20% langsamer als der rote Drehzeiger (Trägersignal):
$$\begin{align*}s_{+}({\rm 5 \hspace{0.05cm} \mu s}) & = {\rm 1 \hspace{0.05cm} V} \cdot {\rm e}^{{\rm j}\hspace{0.05cm} 2 \pi \hspace{0.03cm} \cdot \hspace{0.08cm}50 \hspace{0.03cm} \cdot \hspace{0.08cm}0.005 } + {\rm 0.4 \hspace{0.05cm} V} \cdot {\rm e}^{{\rm j}\hspace{0.05cm} 2 \pi \hspace{0.03cm} \cdot \hspace{0.08cm}60 \hspace{0.03cm} \cdot \hspace{0.08cm}0.005 }+ {\rm 0.4 \hspace{0.05cm} V} \cdot {\rm e}^{{\rm j}\hspace{0.05cm} 2 \pi \hspace{0.03cm} \cdot \hspace{0.08cm}40 \hspace{0.03cm} \cdot \hspace{0.08cm}0.005 } =\\ & = {\rm 1 \hspace{0.05cm} V} \cdot {\rm e}^{{\rm j}\hspace{0.05cm} 90^\circ }+ {\rm 0.4 \hspace{0.05cm} V} \cdot {\rm e}^{{\rm j}\hspace{0.05cm} 108^\circ }+{\rm 0.4 \hspace{0.05cm} V} \cdot {\rm e}^{{\rm j}\hspace{0.05cm} 72^\circ }.\end{align*}$$
Somit sind die in 5 μs zurückgelegten Winkel von OSB und USB 108° bzw. 72°. Da sich zu diesem Zeitpunkt die Realteile von OSB und USB kompensieren, ist $s_+(t =$ 5 μs) rein imaginär und man erhält:
$${\rm Im}\left[s_{+}(t = {\rm 5 \hspace{0.05cm} \mu s})\right] = {\rm 1 \hspace{0.05cm} V} + 2 \cdot {\rm 0.4 \hspace{0.05cm} V}\cdot \cos (18^\circ ) \hspace{0.15 cm}\underline{= {\rm 1.761 \hspace{0.05cm} V}}.$$
4. Nach einer Umdrehung des roten Trägers, also zum Zeitpunkt $t$ = $T_0$ = 20 μs, hat der blaue Zeiger bereits 72° mehr zurückgelegt; der grüne Zeiger 72° weniger. Die Summe der drei Zeiger ist wieder rein reell und ergibt (siehe rechte Grafik):
$${\rm Re}\left[s_{+}({\rm 20 \hspace{0.05cm} \mu s})\right] = {\rm 1 \hspace{0.05cm} V} + 2 \cdot {\rm 0.4 \hspace{0.05cm} V}\cdot \cos (72^\circ ) \hspace{0.15 cm}\underline{= {\rm 1.237 \hspace{0.05cm} V}}.$$
5. Der Betrag ist minimal, wenn die Zeiger der beiden Seitenbänder gegenüber dem Träger um 180° versetzt sind. Daraus folgt:
$$|s_{+}(t)|_{\rm min} = {\rm 1 \hspace{0.05cm} V} - 2 \cdot {\rm 0.4 \hspace{0.05cm} V} \hspace{0.15 cm}\underline{= {\rm 0.2 \hspace{0.05cm} V}}.$$
Innerhalb einer Periode $T_0$ des Trägers tritt gegenüber den Zeigern der beiden Seitenbändern ein Phasenversatz von ±72° auf. Daraus folgt: $t_{\text{min}}$ = 2.5 $\cdot T_0$ = 50 μs.