Aufgaben:Aufgabe 3.12: Trellisdiagramm für zwei Vorläufer: Unterschied zwischen den Versionen
Zeile 26: | Zeile 26: | ||
===Fragebogen=== | ===Fragebogen=== | ||
<quiz display=simple> | <quiz display=simple> | ||
− | { | + | {Berechnen Sie die folgenden Fehlergrößen: |
− | |type=" | + | |type="{}"} |
− | + | $\epsilon_2(010)$ = { 0.01 3% } | |
− | + | $\epsilon_2(011)$ = { 0.09 3% } | |
− | + | $\epsilon_2(110)$ = { 0.36 3% } | |
+ | $\epsilon_2(111)$ = { 0.64 3% } | ||
− | { | + | {Berechnen Sie die folgenden minimalen Gesamtfehlergrößen: |
|type="{}"} | |type="{}"} | ||
− | $\ | + | ${\it \Gamma}_2(10)$ = { 0.21 3% } |
− | + | ${\it \Gamma}_2(11)$ = { 0.29 3% } | |
− | |||
+ | {Wie lauten die vom Viterbi–Empfänger ausgegebene Symbole? | ||
+ | |type="[]"} | ||
+ | + Die ersten sieben Symbole sind $1011010$. | ||
+ | - Die ersten sieben Symbole sind $1101101$. | ||
+ | - Das letzte Symbol $a_8 = 1$ ist sicher. | ||
+ | + Über das Symbol $a_8$ ist noch keine endgültige Aussage möglich. | ||
</quiz> | </quiz> | ||
Version vom 3. November 2017, 10:43 Uhr
Wir gehen von den Grundimpulswerten $g_0$, $g_{\rm –1}$ und $g_{\rm –2}$ aus. Das bedeutet, dass die Entscheidung über das Symbol $a_{\rm \nu}$ auch durch die nachfolgenden Koeffizienten $a_{\rm \nu +1}$ und $a_{\rm \nu +2}$ beeinflusst wird. Damit sind für jeden Zeitpunkt $\nu$ genau $8$ Fehlergrößen $\epsilon_{\rm \nu}$ zu berechnen, aus denen die minimalen Gesamtfehlergrößen ${\it \Gamma}_{\rm \nu}(00)$, ${\it \Gamma}_{\rm \nu}(01)$, ${\it \Gamma}_{\rm \nu}(10)$ und ${\it \Gamma}_{\rm \nu}(11)$ berechnet werden können. Hierbei liefert beispielsweise ${\it \Gamma}_{\rm \nu}(01)$ Information über das Symbol $a_{\rm \nu}$ unter der Annahme, dass $a_{\rm \nu +1} = 0$ und $a_{\rm \nu +2} = 1$ sein werden. Die minimale Gesamtfehlergröße ${\it \Gamma}_{\rm \nu}(01)$ ist hierbei der kleinere Wert aus dem Vergleich von
- $${\it \Gamma}_{\nu-1}(00) + \varepsilon_{\nu}(001) \hspace{0.15cm}{\rm und} \hspace{0.15cm}{\it \Gamma}_{\nu-1}(10) + \varepsilon_{\nu}(101).$$
Zur Berechnung der minimalen Gesamtfehlergröße ${\it \Gamma}_2(10)$ in den Teilaufgaben (1) und (2) soll von folgenden Zahlenwerten ausgegangen werden:
- unipolare Amplitudenkoeffizienten: $a_{\rm \nu} ∈ \{0, 1\}$,
- Grundimpulswerte $g_0 = 0.5$, $g_{\rm –1} = 0.3$, $g_{\rm –2} = 0.2$,
- anliegender Detektionsabtastwert: $d_2 = 0.2$,
- Minimale Gesamtfehlergrößen zum Zeitpunkt $\nu = 1$:
- $${\it \Gamma}_{1}(00) = 0.0,\hspace{0.2cm}{\it \Gamma}_{1}(01) = 0.2, \hspace{1cm} {\it \Gamma}_{1}(10) = 0.6,\hspace{0.2cm}{\it \Gamma}_{1}(11) = 1.2 \hspace{0.05cm}.$$
In der Grafik ist das vereinfachte Trellisdiagramm für die Zeitpunkte $\nu = 1$ bis $\nu = 8$ dargestellt. Blaue Zweige kommen entweder von ${\it \Gamma}_{\rm \nu –1}(00)$ oder von ${\it \Gamma}_{\rm \nu –1}(01)$ und kennzeichnen eine hypothetische „$0$”. Dagegen weisen alle roten Zweige – ausgehend von den Zuständen ${\it \Gamma}_{\rm \nu –1}(10)$ bzw. ${\it \Gamma}_{\rm \nu –1}(11)$ – jeweils auf das Symbol „$1$” hin
Hinweise:
- Die Aufgabe gehört zum Themengebiet von Kapitel Viterbi–Empfänger.
- Alle Größen sind hier normiert zu verstehen.
- Die hier angesprochene Thematik wird auch im folgenden Interaktionsmodul behandelt: Eigenschaften des Viterbi–Empfängers.
Fragebogen
Musterlösung