|
|
| Zeile 124: |
Zeile 124: |
| | JXG.Options.text.useMathJax = true; | | JXG.Options.text.useMathJax = true; |
| | cnfBox = JXG.JSXGraph.initBoard('cnfBoxHtml', { | | cnfBox = JXG.JSXGraph.initBoard('cnfBoxHtml', { |
| − | showCopyright: false, showNavigation: false, axis: false, | + | showCopyright: false, showNavigation: false, axis:true, |
| − | grid: false, zoom: { enabled: false }, pan: { enabled: false }, | + | grid: true, zoom: { enabled: false }, pan: { enabled: false }, |
| | boundingbox: [-1, 2.2, 12.4, -2.2] | | boundingbox: [-1, 2.2, 12.4, -2.2] |
| | }); | | }); |
| | pltBox = JXG.JSXGraph.initBoard('pltBoxHtml', { | | pltBox = JXG.JSXGraph.initBoard('pltBoxHtml', { |
| − | showCopyright: false, axis: false, | + | showCopyright: false, axis:true, |
| | zoom: { factorX: 1.1, factorY: 1.1, wheel: true, needshift: true, eps: 0.1 }, | | zoom: { factorX: 1.1, factorY: 1.1, wheel: true, needshift: true, eps: 0.1 }, |
| − | grid: false, boundingbox: [-0.5, 2.2, 12.4, -2.2] | + | grid: true, boundingbox: [-0.5, 2.2, 12.4, -2.2] |
| | }); | | }); |
| | cnfBox.addChild(pltBox); | | cnfBox.addChild(pltBox); |
| − | // Einstellungen der Achsen
| |
| − | xaxis = pltBox.create('axis', [[0, 0], [1, 0]], {
| |
| − | name: '$\\dfrac{t}{T}$',
| |
| − | withLabel: true, label: { position: 'rt', offset: [-25, -10] }
| |
| − | });
| |
| − | yaxis = pltBox.create('axis', [[0, 0], [0, 1]], {
| |
| − | name: '$x(t)$',
| |
| − | withLabel: true, label: { position: 'rt', offset: [10, -5] }
| |
| − | });
| |
| − | // Erstellen der Schieberegler
| |
| − | sldA1 = cnfBox.create('slider', [ [-0.7, 1.5], [3, 1.5], [0, 0.5, 1] ], {
| |
| − | suffixlabel: '$A_1=$',
| |
| − | unitLabel: 'V', snapWidth: 0.01
| |
| − | }),
| |
| − | sldF1 = cnfBox.create('slider', [ [-0.7, 0.5], [3, 0.5], [0, 1, 10] ], {
| |
| − | suffixlabel: '$f_1=$',
| |
| − | unitLabel: 'kHz', snapWidth: 0.1
| |
| − | }),
| |
| − | sldPHI1 = cnfBox.create('slider', [ [-0.7, -0.5], [3, -0.5], [-180, 0, 180] ], {
| |
| − | suffixlabel: '$\\phi_1=$',
| |
| − | unitLabel: 'Grad', snapWidth: 5
| |
| − | }),
| |
| − | sldA2 = cnfBox.create('slider', [ [6, 1.5], [9.7, 1.5], [0, 0.5, 1] ], {
| |
| − | suffixlabel: '$A_2=$',
| |
| − | unitLabel: 'V', snapWidth: 0.01
| |
| − | }),
| |
| − | sldF2 = cnfBox.create('slider', [ [6, 0.5], [9.7, 0.5], [0, 2, 10] ], {
| |
| − | suffixlabel: '$f_2=$',
| |
| − | unitLabel: 'kHz', snapWidth: 0.1
| |
| − | }),
| |
| − | sldPHI2 = cnfBox.create('slider', [ [6, -0.5], [9.7, -0.5], [-180, 90, 180] ], {
| |
| − | suffixlabel: '$\\phi_2=$',
| |
| − | unitLabel: 'Grad', snapWidth: 5
| |
| − | }),
| |
| − | sldT = cnfBox.create('slider', [ [-0.7, -1.5], [3, -1.5], [0, 0, 10] ], {
| |
| − | suffixlabel: '$t=$',
| |
| − | unitLabel: 's', snapWidth: 0.2
| |
| − | }),
| |
| − | // Definition der Funktion
| |
| − | signaldarstellung = pltBox.create('functiongraph', [function(x) {
| |
| − | return (sldA1.Value() * Math.cos(2 * Math.PI * sldF1.Value() * x - 2 * Math.PI * sldPHI1.Value() / 360) + sldA2.Value() * Math.cos(2 * Math.PI * sldF2.Value() * x - 2 * Math.PI * sldPHI2.Value() / 360))
| |
| − | }], {
| |
| − | strokeColor: "red"
| |
| − | });
| |
| − | // Definition des Punktes p_T0, des Hilfspunktes p_T0h und der Geraden l_T0 für Periodendauer T_0
| |
| − | p_T0 = pltBox.create('point', [
| |
| − | function() {
| |
| − | return (Math.round(getT0() * 100) / 100);
| |
| − | },
| |
| − | function() {
| |
| − | return sldA1.Value() * Math.cos(2 * Math.PI * sldF1.Value() * (Math.round(getT0() * 100) / 100) - 2 * Math.PI * sldPHI1.Value() / 360) +
| |
| − | sldA2.Value() * Math.cos(2 * Math.PI * sldF2.Value() * (Math.round(getT0() * 100) / 100) - 2 * Math.PI * sldPHI2.Value() / 360);
| |
| − | }],
| |
| − | { color: "blue", fixed: true, label: false, size: 1, name: '' }
| |
| − | );
| |
| − | p_T0h = pltBox.create('point',
| |
| − | [function() { return (Math.round(getT0() * 100) / 100); }, 2],
| |
| − | { visible: false, color: "blue", fixed: true, label: false, size: 1, name: '' }
| |
| − | );
| |
| − | l_T0 = pltBox.create('line', [p_T0, p_T0h])
| |
| − | // Bestimmung des Wertes T_0 mit der Funktion von Siebenwirth
| |
| − | setInterval(function() {
| |
| − | document.getElementById("T_0").innerHTML = Math.round(getT0() * 100) / 100;
| |
| − | }, 50);
| |
| − | function isInt(n) {
| |
| − | return n % 1 === 0;
| |
| − | }
| |
| − | function getT0() {
| |
| − | var A, B, C, Q;
| |
| − | if (sldF1.Value() < sldF2.Value()) {
| |
| − | A = sldF1.Value();
| |
| − | B = sldF2.Value();
| |
| − | } else {
| |
| − | B = sldF1.Value();
| |
| − | A = sldF2.Value();
| |
| − | }
| |
| − | // console.log('Berechne T0 mit A=' + A, 'B=' + B);
| |
| − | for (var x = 1; x <= 100; x++) {
| |
| − | C = A / x;
| |
| − | Q = B / C;
| |
| − | // console.log(x + '. Durchgang: C = ' + C, 'Q = ' + Q);
| |
| − | if (isInt(Q)) {
| |
| − | // console.log('Q ist eine Ganzzahl!!! T0 ist damit ', 1 / C);
| |
| − | return 1 / C;
| |
| − | }
| |
| − | if (x === 10) {
| |
| − | return 10;
| |
| − | }
| |
| − | if ((1 / C) > 10)
| |
| − | return 10
| |
| − | }
| |
| − | }
| |
| − | // Ausgabe des Wertes x(t)
| |
| − | setInterval(function() {
| |
| − | document.getElementById("x(t)").innerHTML = Math.round((sldA1.Value() * Math.cos(2 * Math.PI * sldF1.Value() * sldT.Value() - 2 * Math.PI * sldPHI1.Value() / 360) + sldA2.Value() * Math.cos(2 * Math.PI * sldF2.Value() * sldT.Value() - 2 * Math.PI * sldPHI2.Value() /
| |
| − | 360)) * 1000) / 1000;
| |
| − | }, 50);
| |
| − | // Ausgabe des Wertes x(t+T_0)
| |
| − | setInterval(function() {
| |
| − | document.getElementById("x(t+T_0)").innerHTML = Math.round((sldA1.Value() * Math.cos(2 * Math.PI * sldF1.Value() * (sldT.Value() + Math.round(getT0() * 1000) / 1000) - sldPHI1.Value()) + sldA2.Value() * Math.cos(2 * Math.PI * sldF2.Value() * (sldT.Value() +
| |
| − | Math.round(getT0() * 1000) / 1000) - sldPHI2.Value())) * 1000) / 1000;
| |
| − | }, 50);
| |
| − | // Ausgabe des Wertes x(t+2T_0)
| |
| − | setInterval(function() {
| |
| − | document.getElementById("x(t+2T_0)").innerHTML = Math.round((sldA1.Value() * Math.cos(2 * Math.PI * sldF1.Value() * (sldT.Value() + 2 * Math.round(getT0() * 1000) / 1000) - sldPHI1.Value()) + sldA2.Value() * Math.cos(2 * Math.PI * sldF2.Value() * (sldT.Value() +
| |
| − | 2 * Math.round(getT0() * 1000) / 1000) - sldPHI2.Value())) * 1000) / 1000;
| |
| − | }, 50);
| |
| − | // Ausgabe des Wertes x_max
| |
| − | setInterval(function() {
| |
| − | var x = new Array(50000);
| |
| − | for (var i = 0; i < 50001; i++) {
| |
| − | x[i] = Math.round((sldA1.Value() * Math.cos(2 * Math.PI * sldF1.Value() * (i / 1000) - 2 * Math.PI * sldPHI1.Value() / 360) + sldA2.Value() * Math.cos(2 * Math.PI * sldF2.Value() * (i / 1000) - 2 * Math.PI * sldPHI2.Value() / 360)) * 1000) / 1000;
| |
| − | }
| |
| − | document.getElementById("x_max").innerHTML = Math.max.apply(Math, x);
| |
| − | }, 50);
| |
| | | | |
| − | // Definition der Funktion zum An- und Ausschalten des Koordinatengitters
| + | |
| − | function showgrid() {
| |
| − | if (gridbox.checked) {
| |
| − | xaxis = pltBox.create('axis', [ [0, 0], [1, 0] ], {});
| |
| − | yaxis = pltBox.create('axis', [ [0, 0], [0, 1] ], {});
| |
| − | } else {
| |
| − | xaxis.removeTicks(xaxis.defaultTicks);
| |
| − | yaxis.removeTicks(yaxis.defaultTicks);
| |
| − | }
| |
| − | pltBox.fullUpdate();
| |
| − | };
| |
| | </script> | | </script> |
| | | | |