Aufgaben:Aufgabe 4.2: Wieder Dreieckgebiet: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
Zeile 28: Zeile 28:
 
{Wie lauten die Grenzgeraden des inneren Integrals zur <i>m<sub>xy</sub></i>-Berechnung?
 
{Wie lauten die Grenzgeraden des inneren Integrals zur <i>m<sub>xy</sub></i>-Berechnung?
 
|type="[]"}
 
|type="[]"}
- <i>y</i><sub>1</sub>(<i>x</i>) = <i>x</i> + 1;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<i>y</i><sub>2</sub>(<i>x</i>) = 2<i>x</i> + 1.
+
- $y_1(x) = x+1, $ &nbsp; &nbsp; $y_2(x) = 2x+1.$
+ <i>y</i><sub>1</sub>(<i>x</i>) = <i>x</i>/2 + 1;&nbsp;&nbsp;&nbsp;<i>y</i><sub>2</sub>(<i>x</i>) = <i>x</i> + 1.
+
+ $y_1(x) = x/2+1, $ &nbsp; &nbsp; $y_2(x) = x+1.$
- <i>y</i><sub>1</sub>(<i>x</i>) = <i>x</i> &ndash; 1;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<i>y</i><sub>2</sub>(<i>x</i>) = 2<i>x</i> + 1.
+
- $y_1(x) = x-1, $ &nbsp; &nbsp; $y_2(x) = 2x+1.$
  
  
{Berechnen Sie das gemeinsame Moment <i>m<sub>xy</sub></i> gem&auml;&szlig; dem Doppelintegral auf der Angabenseite. <i>Hinweis</i>: Setzen Sie <i>x</i><sub>1</sub> = 0 und <i>x</i><sub>2</sub> = 4.
+
{Berechnen Sie das gemeinsame Moment $m_{xy}$ gem&auml;&szlig; dem Doppelintegral auf der Angabenseite. <i>Hinweis</i>: Setzen Sie $x_1 = 0$ und $x_2 = 4$ .
 
|type="{}"}
 
|type="{}"}
$m_\text{xy}$ = { 8.667 3% }
+
$m_{xy} \ =$ { 8.667 3% }
  
  
{Welcher Wert ergibt sich f&uuml;r die Kovarianz?
+
{Welcher Wert ergibt sich f&uuml;r die Kovarianz $\mu_{xy}$ ?
 
|type="{}"}
 
|type="{}"}
$\mu_\text{xy}$ = { 0.667 3% }
+
$\mu_{xy}\ =$ { 0.667 3% }
  
  
{Wie gro&szlig; ist der Korrelationskoeffizient?
+
{Wie gro&szlig; ist der Korrelationskoeffizient $\rho_{xy}$?
 
|type="{}"}
 
|type="{}"}
$\rho_\text{xy}$ = { 0.866 3% }
+
$\rho_{xy}\ =$ { 0.866 3% }
  
  
{Wie lautet die Gleichung der Korrelationsgeraden <i>y</i> = <i>K</i>(<i>x</i>)? An welcher Stelle <i>y</i><sub>0</sub> schneidet die Gerade die <i>y</i>-Achse? Zeigen Sie, dass die Korrelationsgerade auch durch den Punkt (<i>m<sub>x</sub></i>, <i>m<sub>y</sub></i>) geht.
+
{Wie lautet die Gleichung der Korrelationsgeraden $y = K(x)$? An welcher Stelle $y_0$ schneidet die Gerade die $y$-Achse? Zeigen Sie, dass die Korrelationsgerade auch durch den Punkt $(m_x, m_y)$ geht.
 
|type="{}"}
 
|type="{}"}
$y_0$ = { 1 3% }
+
$y_0\ =$ { 1 3% }
  
  

Version vom 18. März 2017, 16:06 Uhr

Dreieckiges 2D-Gebiet und Randwahrscheinlichkeitsdichten

Wir betrachten die gleiche Zufallsgröße ($x$, $y$) wie in Aufgabe 4.1:

  • In einem durch die Eckpunkte (0,1), (4,3) und (4,5) definierten dreieckförmigen Gebiet $D$ sei die 2D–WDF $f_{xy} (x, y) = 0.25$. *Außerhalb dieses in der Grafik rot markierten Definitionsgebietes $D$ gibt es keine Werte.


Weiterhin sind in der Grafik die beiden Randwahrscheinlichkeitsdichten bezüglich den Größen $x$ und $y$ eingezeichnet, die bereits in der Aufgabe 4.1 ermittelt wurden. Daraus lassen sich mit den Gleichungen des Kapitels Erwartungswerte und Momente die Kenngrößen der beiden Zufallsgrößen bestimmen: $$m_x=8/3 ,\hspace{0.5cm} \sigma_x=\sqrt{8/9},$$ $$ m_y= 3,\hspace{0.95cm} \sigma_y = \sqrt{\rm 2/3}.$$

Aufgrund der Tatsache, dass das Definitionsgebiet $D$ durch zwei Gerade $y_1(x)$ und $y_2(x)$ begrenzt ist, kann hier das gemeinsame Moment erster Ordnung wie folgt berechnet werden. $$m_{xy}={\rm E}[x\cdot y]=\int_{x_{1}}^{x_{2}}x\cdot \int_{y_{1}(x)}^{y_{2}(x)}y \cdot f_{xy}(x,y) \, \,{\rm d}y\, {\rm d}x.$$


Hinweise:


Fragebogen

1

Wie lauten die Grenzgeraden des inneren Integrals zur mxy-Berechnung?

$y_1(x) = x+1, $     $y_2(x) = 2x+1.$
$y_1(x) = x/2+1, $     $y_2(x) = x+1.$
$y_1(x) = x-1, $     $y_2(x) = 2x+1.$

2

Berechnen Sie das gemeinsame Moment $m_{xy}$ gemäß dem Doppelintegral auf der Angabenseite. Hinweis: Setzen Sie $x_1 = 0$ und $x_2 = 4$ .

$m_{xy} \ =$

3

Welcher Wert ergibt sich für die Kovarianz $\mu_{xy}$ ?

$\mu_{xy}\ =$

4

Wie groß ist der Korrelationskoeffizient $\rho_{xy}$?

$\rho_{xy}\ =$

5

Wie lautet die Gleichung der Korrelationsgeraden $y = K(x)$? An welcher Stelle $y_0$ schneidet die Gerade die $y$-Achse? Zeigen Sie, dass die Korrelationsgerade auch durch den Punkt $(m_x, m_y)$ geht.

$y_0\ =$


Musterlösung

1.  Richtig ist der mittlere Vorschlag: Sowohl y1(x) als auch y2(x) schneiden die y-Achse bei y = 1. Die untere Begrenzungslinie hat die Steigung 0.5, die obere die Steigung 1.
2.  Entsprechend den Hinweisen erhalten wir:
$$m_{xy}=\int_{\rm 0}^{\rm 4}\it x \cdot \int_{\it x/\rm 2 +\rm 1}^{\it x+\rm 1}\rm \frac{1}{4}\cdot \it y \, \,{\rm d}y\,\, \, {\rm d}x = \rm\frac{1}{8}\cdot \int_{\rm 0}^{\rm 4}\it x\cdot[(\it x+\rm 1)^{\rm 2}- (\frac{\it x}{2}+\rm 1)^{\rm 2} ] \it \,\, {\rm d}x.$$
Dies führt zum Integral bzw. Endergebnis:
$$m_{xy}=\rm\frac{1}{8}\int_{\rm 0}^{\rm 4}(\rm\frac{3}{4}\it x^{\rm 3}+\it x^{\rm 2})\,{\rm d}x = \rm \frac{1}{8} \cdot (\frac{3}{16}\cdot 4^4+\rm \frac{4^3}{3})=\frac{26}{3}\hspace{0.15cm}\underline{ \approx 8.667}.$$
3.  Da beide Zufallsgrößen jeweils einen Mittelwert ungleich 0 besitzen, folgt für die Kovarianz:
$$\it \mu_{xy}=\it m_{xy}-m_{x}\cdot m_{y}=\frac{\rm 26}{\rm 3}-\frac{\rm 8}{\rm 3}\cdot\rm 3={2}/{3} \hspace{0.15cm}\underline{=0.667}.$$
4.  Mit den angegebenen Streuungen erhält man:
$$\rho_{xy}=\frac{\mu_{xy}}{\sigma_{x}\cdot\sigma_{y}}=\frac{{\rm 2}/{\rm 3}}{\sqrt{{\rm 8}/{\rm 9}}\cdot\sqrt{{\rm 2}/{\rm 3}}}=\sqrt{0.75}\hspace{0.15cm}\underline{=\rm 0.866}.$$
P ID223 Sto A 4 2 d.png
5.  Für die Korrelationsgerade gilt allgemein:
$$\it y-m_{y}=\rho_{xy}\cdot\frac{\sigma_{y}}{\sigma_ {x}}\cdot(x-m_{x}).$$
Mit den oben berechneten Zahlenwerten erhält man
$$y={\rm 3}/{\rm 4}\cdot \it x +\rm 1.$$
Die Korrelationsgerade schneidet die y-Achse bei y0 = 1 und geht auch durch den Punkt (4, 4). Jedes andere Ergebnis wäre auch nicht zu interpretieren, wenn man das Definitionsgebiet betrachtet. Setzt man mx = 8/3 ein, so erhält man y = my = 3. Das heißt: Die berechnete Korrelationsgerade geht tatsächlich durch den Punkt (mx, my), wie es die Theorie besagt.