Aufgaben:Aufgabe 3.1Z: Spektrum des Dreieckimpulses: Unterschied zwischen den Versionen
Zeile 59: | Zeile 59: | ||
Addiert man die beiden Anteile, so ergibt sich: | Addiert man die beiden Anteile, so ergibt sich: | ||
:$$X(f) = \frac{2A}{\omega ^2 \cdot T}\left[ {1 - \cos \left( {\omega T} \right)} \right] = \frac{A}{2\pi ^2 f^2 T} \cdot \left[ {1 - \cos \left( {2\pi fT} \right)} \right].$$ | :$$X(f) = \frac{2A}{\omega ^2 \cdot T}\left[ {1 - \cos \left( {\omega T} \right)} \right] = \frac{A}{2\pi ^2 f^2 T} \cdot \left[ {1 - \cos \left( {2\pi fT} \right)} \right].$$ | ||
− | Bei der Frequenz $f = 1/(2T) = 500 \text{Hz}$ ist das Argument der Cosinusfunktion gleich $\pi$ | + | Bei der Frequenz $f = 1/(2T) = 500 \,\text{Hz}$ ist das Argument der Cosinusfunktion gleich $\pi$ ⇒ die Cosinusfunktion selbst gleich $–\hspace{0.1 cm}1$. Daraus folgt: |
:$$X( {f = \frac{1}{2T} = 500\;{\rm Hz}} ) = \frac{4}{\pi^2} \cdot A \cdot T = \frac{4}{\pi^2} \cdot 1\;{\rm V} \cdot 10^{ - 3}\;{\rm s}\hspace{0.15 cm}\underline{= 0.405 \,{\rm mV/Hz}}.$$ | :$$X( {f = \frac{1}{2T} = 500\;{\rm Hz}} ) = \frac{4}{\pi^2} \cdot A \cdot T = \frac{4}{\pi^2} \cdot 1\;{\rm V} \cdot 10^{ - 3}\;{\rm s}\hspace{0.15 cm}\underline{= 0.405 \,{\rm mV/Hz}}.$$ | ||
− | '''2.''' Mit der trigonometrischen Umformung | + | |
− | + | '''2.''' Mit der trigonometrischen Umformung ${1}/{2} \cdot (1 - \cos (2 \alpha)) = \sin^2(\alpha)$ erhält man für die Spektralfunktion: | |
− | erhält man für die Spektralfunktion: | ||
:$$X(f) = A \cdot T \cdot \frac{\sin^2(\pi f T)}{\pi^2 \cdot {f^2 \cdot T^2}} = A \cdot T \cdot {{{\rm si}^2(\pi f T)}}.$$ | :$$X(f) = A \cdot T \cdot \frac{\sin^2(\pi f T)}{\pi^2 \cdot {f^2 \cdot T^2}} = A \cdot T \cdot {{{\rm si}^2(\pi f T)}}.$$ | ||
Bei der Frequenz $f = 0$ ist die si-Funktion gleich $1$. Daraus folgt: | Bei der Frequenz $f = 0$ ist die si-Funktion gleich $1$. Daraus folgt: | ||
− | :$$X( {f = 0} ) = A \cdot T \hspace{0.15 cm}\underline{= | + | :$$X( {f = 0} ) = A \cdot T \hspace{0.15 cm}\underline{= 1\,{\rm mV/Hz}}.$$ |
+ | |||
+ | '''3.''' Die erste Nullstelle tritt auf, wenn das Argument der si-Funktion gleich $\pi$ ist. Daraus folgt $f_0 \cdot T = 1$ bzw. $f_0 = 1/T \hspace{0.15 cm}\underline{= 1 \text{kHz}}$. | ||
− | ''' | + | [[Datei:P_ID497__Sig_Z_3_1_d_neu.png|right|si-Quadrat-Spektrum]] |
+ | '''4.''' Das Spektrum ${X(f)}$ ist bei Vielfachen von $f_0$ ($f = n \cdot f_0$) gleich ${\rm s}i^2(n \cdot \pi) = 0$. | ||
+ | *Die <u>erste Aussage</u> trifft also zu. | ||
+ | * Nicht aber die zweite: Bei keiner Frequenz $f$ ist ${X(f)} < 0$ (siehe Skizze). | ||
− | |||
− | |||
{{ML-Fuß}} | {{ML-Fuß}} | ||
Version vom 16. Januar 2017, 16:30 Uhr
Betrachtet wird ein Dreieckimpuls ${x(t)}$, der im Bereich $–T ≤ t ≤ T$ durch folgende Gleichung beschrieben wird:
- $$x(t) = A \cdot \left( {1 - \frac{\left| \hspace{0.05cm}t \hspace{0.05cm}\right|}{T}} \right).$$
Die Impulsamplitude sei $A = 1\, \text{V}$, der Zeitparameter $T = 1 \text{ms}$. Für alle Zeiten $| t | > T$ ist ${x(t)} = 0$.
Zur Berechnung der Spektralfunktionen ${X(f)}$ können Sie folgende Eigenschaften ausnutzen:
- Die Zeitfunktion ist gerade und damit die Spektralfunktion reell:
- $$X\left( f \right) = \int_{ - \infty }^{ + \infty } {x(t)} \cdot {\rm e}^{{\rm j}2\pi ft} {\rm d}t = 2 \cdot \int_0^{ \infty } {x(t)} \cdot \cos \left( {2\pi ft} \right){\rm d}t.$$
- Für $| t | > T$ besitzt ${x(t)}$ keine Anteile:
- $$X\left( f \right) = 2 \cdot \int_0^T {x(t)} \cdot \cos \left( {2\pi ft} \right){\rm d}t.$$
Hinweise:
- Die Aufgabe gehört zum Kapitel Fouriertransformation und -rücktransformation.
- Weitere Informationen zu dieser Thematik liefert das Lernvideo Unterschiede und Gemeinsamkeiten von kontinuierlichen und diskreten Spektren.
- Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
- Zur Lösung dieser Aufgabe können Sie auf die folgenden Formeln zurückgreifen:
- $$\int {t \cdot \cos \left( {\omega _0 t} \right){\rm d}t = \frac{{\cos \left( {\omega _0 t} \right)}}{\omega _0 ^2 }} + \frac{{t \cdot \sin \left( {\omega _0 t} \right)}}{\omega _0 }, \hspace{0.5cm} \sin ^2 \left( \alpha \right) = {1}/{2} \cdot \left( {1 - \cos \left( {2\alpha } \right)} \right).$$
Fragebogen
Musterlösung
- $$X(f) = 2A \cdot \int_0^T {\left( {1 -{t}/{T}} \right)} \cdot \cos \left( {\omega t} \right)\hspace{0.1cm}{\rm d}t.$$
Dieses Integral setzt sich aus zwei Anteilen zusammen:
- $$X_1 (f) = 2A \cdot \int_0^T {\cos } \left( {\omega t} \right)\hspace{0.1cm}{\rm d}t = \frac{2A}{\omega } \cdot \sin \left( {\omega T} \right),$$
- $$X_2 (f) = - \frac{2A}{T} \cdot \int_0^T {t \cdot \cos } \left( {\omega t} \right)\hspace{0.1cm}{\rm d}t = - \frac{2A}{T} \cdot \left. {\left[ {\frac{{\cos \left( {\omega t} \right)}}{\omega ^2 } + \frac{{t \cdot \sin \left( {\omega t} \right)}}{\omega }} \right]} \right|_0^T .$$
Unter Berücksichtigung von oberer und unterer Grenze erhält man:
- $$X_2 \left( f \right) = - \frac{2A}{T} \cdot \left[ {\frac{{\cos \left( {\omega T} \right)}}{\omega ^2 } - \frac{1}{\omega ^2 } + \frac{{T \cdot \sin \left( {\omega T} \right)}}{\omega }} \right].$$
Addiert man die beiden Anteile, so ergibt sich:
- $$X(f) = \frac{2A}{\omega ^2 \cdot T}\left[ {1 - \cos \left( {\omega T} \right)} \right] = \frac{A}{2\pi ^2 f^2 T} \cdot \left[ {1 - \cos \left( {2\pi fT} \right)} \right].$$
Bei der Frequenz $f = 1/(2T) = 500 \,\text{Hz}$ ist das Argument der Cosinusfunktion gleich $\pi$ ⇒ die Cosinusfunktion selbst gleich $–\hspace{0.1 cm}1$. Daraus folgt:
- $$X( {f = \frac{1}{2T} = 500\;{\rm Hz}} ) = \frac{4}{\pi^2} \cdot A \cdot T = \frac{4}{\pi^2} \cdot 1\;{\rm V} \cdot 10^{ - 3}\;{\rm s}\hspace{0.15 cm}\underline{= 0.405 \,{\rm mV/Hz}}.$$
2. Mit der trigonometrischen Umformung ${1}/{2} \cdot (1 - \cos (2 \alpha)) = \sin^2(\alpha)$ erhält man für die Spektralfunktion:
- $$X(f) = A \cdot T \cdot \frac{\sin^2(\pi f T)}{\pi^2 \cdot {f^2 \cdot T^2}} = A \cdot T \cdot {{{\rm si}^2(\pi f T)}}.$$
Bei der Frequenz $f = 0$ ist die si-Funktion gleich $1$. Daraus folgt:
- $$X( {f = 0} ) = A \cdot T \hspace{0.15 cm}\underline{= 1\,{\rm mV/Hz}}.$$
3. Die erste Nullstelle tritt auf, wenn das Argument der si-Funktion gleich $\pi$ ist. Daraus folgt $f_0 \cdot T = 1$ bzw. $f_0 = 1/T \hspace{0.15 cm}\underline{= 1 \text{kHz}}$.
4. Das Spektrum ${X(f)}$ ist bei Vielfachen von $f_0$ ($f = n \cdot f_0$) gleich ${\rm s}i^2(n \cdot \pi) = 0$.
- Die erste Aussage trifft also zu.
- Nicht aber die zweite: Bei keiner Frequenz $f$ ist ${X(f)} < 0$ (siehe Skizze).