Aufgaben:Aufgabe 2.6: Komplexe Fourierreihe: Unterschied zwischen den Versionen
Zeile 61: | Zeile 61: | ||
{{ML-Kopf}} | {{ML-Kopf}} | ||
'''1.''' Mit dem Eulerschen Satz ist der komplexe Fourierkoeffizient $D_n$ wie folgt darstellbar: | '''1.''' Mit dem Eulerschen Satz ist der komplexe Fourierkoeffizient $D_n$ wie folgt darstellbar: | ||
− | + | ||
+ | $${\rm Re} [D_n] =\frac{T_0/T_1} \cdot {(2\pi n)^2}(1-\cos(2\pi nT_1/T_0)),$$ | ||
+ | |||
+ | $${\rm Im}[D_n] =\frac{T_0/T_1}{(2\pi n)^2} \cdot \sin(2\pi nT_1/T_0)-\frac{1}{2\pi n}.$$ | ||
Mit der für kleine $\alpha$ -Werte gültigen Näherung $\text{sin}(\alpha ) \approx \alpha$ erhält man für den Imaginärteil: | Mit der für kleine $\alpha$ -Werte gültigen Näherung $\text{sin}(\alpha ) \approx \alpha$ erhält man für den Imaginärteil: | ||
+ | |||
+ | $${\rm Im}[D_n] =\frac{T_0/T_1}{(2\pi n)^2}\cdot(2\pi nT_1/T_0)-\frac{1}{2\pi n}=0.$$ | ||
− | Für den Realteil erhält man mit $\text{cos}(\alpha) \approx 1 – \ | + | Für den Realteil erhält man mit $\text{cos}(\alpha) \approx 1 – \alpha^{2}/2$: |
+ | |||
+ | $${\rm Re}[D_n] =\frac{T_0/T_1}{(2\pi n)^2}\frac{(2\pi nT_1/T_0)^2}{2}=\frac{T_1/T_0}{2}.$$ | ||
Für $T_1 = T_0/2$ folgt daraus der Gleichsignalkoeffizient $D_0 = 0.25$. Mit $T_1 = T_0$ ergibt sich $D_0 = 0.5$. Ein Vergleich mit den Signalen $x(t)$ und $y(t)$ auf der Angabenseite zeigen die Richtigkeit dieser Ergebnisse. | Für $T_1 = T_0/2$ folgt daraus der Gleichsignalkoeffizient $D_0 = 0.25$. Mit $T_1 = T_0$ ergibt sich $D_0 = 0.5$. Ein Vergleich mit den Signalen $x(t)$ und $y(t)$ auf der Angabenseite zeigen die Richtigkeit dieser Ergebnisse. |
Version vom 16. Januar 2017, 10:41 Uhr
Wir betrachten das Signal $x(t)$, das durch die beiden Parameter $T_0$ und $T_1$ festgelegt ist, wobei stets $T_1 \leq T_0$ gelten soll. Für die komplexen Fourierkoeffizienten
$$D_n=\frac{1}{T_0} \cdot \int_0^{T_0}x(t)\cdot\rm e^{-\rm j\it n\omega_0t}\,{\rm d} \it t$$
dieses Signals erhält man nach mathematischen Umformungen:
$$D_n=\frac{T_0/T_1} {(2\pi n)^2} \cdot \bigg(1-{\rm e}^{-{\rm j} 2\pi nT_1/T_0}\bigg)-\frac{\rm j}{2\pi n}.$$
- Der in den Teilaufgaben (1) und (3) behandelte Parametersatz (mit $T_1 = T_0/2$) ist als das Signal $x(t)$ dargestellt.
- Für $T_1 = T_0$ (Teilaufgabe 2) ergibt sich die Funktion $y(t)$.
- In der Teilaufgabe (4) wird das Signal $z(t)$ betrachtet. Dessen Fourierkoeffizienten lauten:
$$A_0=1/4,$$
$$A_n=\left\{ \begin{array}{cl} {\frac{\displaystyle-2}{\displaystyle(\pi n)^2}} & {\rm f\ddot{u}r\; geradzahliges\; \it n \rm ,} \\ 0 & {\rm f\ddot{u}r\; ungeradzahliges\; \it n,} \end{array}\right. $$
$$B_n=0\; \;\; \rm{ f\ddot{u}r\; alle\; \it n.}$$
Hinweise:
- Die Aufgabe bezieht sich auf die Seite Komplexe Fourierreihe.
- Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
Fragebogen
Musterlösung
$${\rm Re} [D_n] =\frac{T_0/T_1} \cdot {(2\pi n)^2}(1-\cos(2\pi nT_1/T_0)),$$
$${\rm Im}[D_n] =\frac{T_0/T_1}{(2\pi n)^2} \cdot \sin(2\pi nT_1/T_0)-\frac{1}{2\pi n}.$$
Mit der für kleine $\alpha$ -Werte gültigen Näherung $\text{sin}(\alpha ) \approx \alpha$ erhält man für den Imaginärteil:
$${\rm Im}[D_n] =\frac{T_0/T_1}{(2\pi n)^2}\cdot(2\pi nT_1/T_0)-\frac{1}{2\pi n}=0.$$
Für den Realteil erhält man mit $\text{cos}(\alpha) \approx 1 – \alpha^{2}/2$:
$${\rm Re}[D_n] =\frac{T_0/T_1}{(2\pi n)^2}\frac{(2\pi nT_1/T_0)^2}{2}=\frac{T_1/T_0}{2}.$$
Für $T_1 = T_0/2$ folgt daraus der Gleichsignalkoeffizient $D_0 = 0.25$. Mit $T_1 = T_0$ ergibt sich $D_0 = 0.5$. Ein Vergleich mit den Signalen $x(t)$ und $y(t)$ auf der Angabenseite zeigen die Richtigkeit dieser Ergebnisse.
2. Es wird nun $n \neq 0$ vorausgesetzt. Mit $T_1 = T_0$ erhält man für den Realteil wegen $\text{cos}(2\pi n) = 1$:
Der Imagnärteil lautet:
Wegen $\text{sin}(2\pi n) = 0$ folgt daraus:
Somit ist
Der Koeffizientenvergleich liefert $A_n = 0$ und $B_n = 1/(\pi n)$, Insbesondere sind $A_1 = 0$ und $B1 \approx 0.318$. Wie zu erwarten war, gilt stets $B_{–n} = –B_n$.
3. Aus der in der Teilaufgabe 1) berechneten allgemeinen Gleichung folgt mit $T_1/T_0 = 1/2$:
Daraus erhält man die Cosinuskoeffizienten
Die Sinuskoeffizienten lauten:
Hierbei ist berücksichtigt, dass für alle ganzzahligen Werte von n die Funktion $\text{sin}(n\pi ) = 0$ ist. Die jeweils ersten reellen Koeffizienten lauten $A_1 = 2/\pi_2 \approx 0.203$ und $B_1 = 1/\pi \approx 0.318$.
4. Das Signal $x(t)$ ist gleich der Differenz zwischen $y(t)$ und $z(t)$. Da $z(t)$ eine gerade und $y(t)$ eine ungerade Funktion ist, werden die Cosinuskoeffizienten $A_n$ allein durch die Koeffizienten des Signals $z(t)$ bestimmt, allerdings mit negativen Vorzeichen. Die Sinuskoeffizienten $B_n$ stimmen vollständig mit denen von $y(t)$ überein. Der Gleichsignalanteil von $x(t)$ ergibt sich aus der Differenz der beiden Gleichanteile von $y(t)$ und $z(t): A_0 = 0.5 – 0.25 = 0.25$. Richtig sind somit die Lösungsvorschläge 2, 4 und 5.