Aufgaben:Aufgabe 1.6: Rechteckförmige Impulsantwort: Unterschied zwischen den Versionen
Zeile 60: | Zeile 60: | ||
===Musterlösung=== | ===Musterlösung=== | ||
{{ML-Kopf}} | {{ML-Kopf}} | ||
− | ''' | + | '''a)''' Die Bedingung $H(f = 0) =$ 1 bedeutet, dass die Fläche der Impulsantwort gleich 1 ist. Daraus folgt: |
$$k = \frac{1}{\Delta t} \hspace{0.15cm}\underline{= 500\hspace{0.1cm}{ 1/{\rm s}}} .$$ | $$k = \frac{1}{\Delta t} \hspace{0.15cm}\underline{= 500\hspace{0.1cm}{ 1/{\rm s}}} .$$ | ||
− | ''' | + | '''b)''' Das Ausgangssignal $y(t)$ ergibt sich als das Faltungsprodukt von $x(t)$ und $h(t)$. Die Faltung zweier gleich breiter Rechtecke ergibt ein Dreieck mit dem Maximum bei $t =$ 0: |
$$y(t = 0 ) = 1\hspace{0.05cm}{\rm V}\cdot \int\limits_{ - 1\,{\rm ms} }^{ 1\,{\rm ms} } {k \hspace{0.1cm}}{\rm d}\tau = | $$y(t = 0 ) = 1\hspace{0.05cm}{\rm V}\cdot \int\limits_{ - 1\,{\rm ms} }^{ 1\,{\rm ms} } {k \hspace{0.1cm}}{\rm d}\tau = | ||
1\hspace{0.05cm}{\rm V}\cdot \int\limits_{ - 1\,{\rm ms} }^{ 1\,{\rm ms} } {\frac{1}{2\,{\rm ms}} \hspace{0.1cm}}{\rm d}\tau= 1\hspace{0.05cm}{\rm V}.$$ | 1\hspace{0.05cm}{\rm V}\cdot \int\limits_{ - 1\,{\rm ms} }^{ 1\,{\rm ms} } {\frac{1}{2\,{\rm ms}} \hspace{0.1cm}}{\rm d}\tau= 1\hspace{0.05cm}{\rm V}.$$ | ||
Zeile 70: | Zeile 70: | ||
− | ''' | + | '''c)''' [[Datei: P_ID859__LZI_A_1_6_c.png | Trapezimpuls (ML zu Aufgabe A1.6c) | rechts]] Die Faltung von zwei unterschiedlich breiten Rechtecken führt zu einem trapezförmigen Ausgangssignal entsprechend der Skizze. Der Maximalwert tritt im konstanten Bereich von –0.5 ms bis 0.5 ms auf und beträgt |
$$y(t = 0 ) = 1\hspace{0.05cm}{\rm V} \cdot \frac{1}{2\,{\rm | $$y(t = 0 ) = 1\hspace{0.05cm}{\rm V} \cdot \frac{1}{2\,{\rm | ||
ms}} \hspace{0.05cm}\cdot 1\,{\rm ms} = 0.5\hspace{0.05cm}{\rm V}.$$ | ms}} \hspace{0.05cm}\cdot 1\,{\rm ms} = 0.5\hspace{0.05cm}{\rm V}.$$ | ||
Zeile 76: | Zeile 76: | ||
− | ''' | + | '''d)''' [[Datei: P_ID860__LZI_A_1_6_d.png | Akausale HP–Sprungantwort (ML zu Aufgabe A1.6d) | rechts]] Die Impulsantwort des Gesamtsystems lautet: |
$$h_{\rm HP}(t) = \delta(t) - h(t).$$ | $$h_{\rm HP}(t) = \delta(t) - h(t).$$ | ||
Diese beiden Anteile sind in der Skizze dargestellt. Durch Integration über $h_{\rm HP}(t)$ und Multiplikation mit 1 V kommt man zum gesuchten Signal $z(t)$. In der unteren Skizze ist das Integral über $δ(t)$ blau, die Funktion $–σ(t)$ rot und das gesamte Signal $z(t)$ grün gezeichnet. | Diese beiden Anteile sind in der Skizze dargestellt. Durch Integration über $h_{\rm HP}(t)$ und Multiplikation mit 1 V kommt man zum gesuchten Signal $z(t)$. In der unteren Skizze ist das Integral über $δ(t)$ blau, die Funktion $–σ(t)$ rot und das gesamte Signal $z(t)$ grün gezeichnet. | ||
Zeile 85: | Zeile 85: | ||
− | ''' | + | '''e)''' Die Grafik zeigt die resultierende Impulsantwort $h_{\rm HP}(t)$ und die Sprungantwort $σ_{\rm HP}(t)$, die bei $t =$ 0 auf 1 springt und bis zum Zeitpunkt $t =$ 2 ms auf den Endwert 0 abklingt. Zum Zeitpunkt $t =$ 1 ms ergibt sich $σ_{\rm HP}(t) =$ 0.5. |
[[Datei: P_ID861__LZI_A_1_6_e.png | Kausale HP–Sprungantwort (ML zu Aufgabe A1.6e) | rechts]] Das Signal $z(t)$ ist formgleich mit der Sprungantwort $σ_{\rm HP}(t)$, ist jedoch noch mit 1 V zu multiplizieren. Der gesuchte Signalwert zur Zeit $t_1 =$ 1 ms ergibt sich zu $z(t_1) \rm \underline{\ = \ 0.5}$. | [[Datei: P_ID861__LZI_A_1_6_e.png | Kausale HP–Sprungantwort (ML zu Aufgabe A1.6e) | rechts]] Das Signal $z(t)$ ist formgleich mit der Sprungantwort $σ_{\rm HP}(t)$, ist jedoch noch mit 1 V zu multiplizieren. Der gesuchte Signalwert zur Zeit $t_1 =$ 1 ms ergibt sich zu $z(t_1) \rm \underline{\ = \ 0.5}$. |
Version vom 4. August 2016, 14:37 Uhr
Wir betrachten im Folgenden die in der Grafik gezeigte Konstellation. Der Frequenzgang $H(f) = H_1(f) · H_2(f)$ im unteren Zweig ist durch die Impulsantworten seiner beiden Teilkomponenten festgelegt. Hierbei ist $h_1(t)$ im Bereich von –1 ms bis 1 ms konstant gleich $k$ und außerhalb 0; an den Bereichsgrenzen gilt jeweils der halbe Wert. Die im Bild eingezeichnete Zeitvariable ist somit $Δt =$ 2 ms.
Die Impulsantwort der zweiten Systemfunktion $H_2(f)$ lautet:
$$h_2(t) = \delta(t - \tau).$$
Der Frequenzgang zwischen den Signalen $x(t)$ und $z(t)$ hat Hochpass–Charakter und lautet allgemein:
$$H_{\rm HP}(f) = 1 - H_1(f) \cdot {\rm e}^{-{\rm j2 \pi}f \tau}.$$
Für die Teilaufgaben a) bis d) gelte $τ =$ 0 und damit $H(f) = H_1(f)$. Mit dem Parameter $τ =$ 0 kann hierfür auch geschrieben werden ( $Δt =$ 2 ms):
$$H_{\rm HP}(f) = 1 - {\rm si}( \pi \cdot {\rm \Delta}t \cdot f).$$
Ohne Auswirkung auf die Lösung der Aufgabe ist anzumerken, dass diese Gleichung für $τ ≠$ 0 nicht anwendbar ist:
$$|H_{\rm HP}(f)|\hspace{0.09cm} \ne \hspace{0.09cm}1 - |H_1(f)| .$$
Hinweis: Diese Aufgabe bezieht sich auf den Theorieteil von Kapitel 1.3.
Fragebogen
Musterlösung
b) Das Ausgangssignal $y(t)$ ergibt sich als das Faltungsprodukt von $x(t)$ und $h(t)$. Die Faltung zweier gleich breiter Rechtecke ergibt ein Dreieck mit dem Maximum bei $t =$ 0:
$$y(t = 0 ) = 1\hspace{0.05cm}{\rm V}\cdot \int\limits_{ - 1\,{\rm ms} }^{ 1\,{\rm ms} } {k \hspace{0.1cm}}{\rm d}\tau =
1\hspace{0.05cm}{\rm V}\cdot \int\limits_{ - 1\,{\rm ms} }^{ 1\,{\rm ms} } {\frac{1}{2\,{\rm ms}} \hspace{0.1cm}}{\rm d}\tau= 1\hspace{0.05cm}{\rm V}.$$
Richtig sind somit die $\rm \underline{ \ Vorschläge \ 2 \ und \ 4}$.
$$y(t = 0 ) = 1\hspace{0.05cm}{\rm V} \cdot \frac{1}{2\,{\rm ms}} \hspace{0.05cm}\cdot 1\,{\rm ms} = 0.5\hspace{0.05cm}{\rm V}.$$ Richtig ist somit nur $\rm \underline{ \ die \ dritte \ Alternative}$.
$$h_{\rm HP}(t) = \delta(t) - h(t).$$ Diese beiden Anteile sind in der Skizze dargestellt. Durch Integration über $h_{\rm HP}(t)$ und Multiplikation mit 1 V kommt man zum gesuchten Signal $z(t)$. In der unteren Skizze ist das Integral über $δ(t)$ blau, die Funktion $–σ(t)$ rot und das gesamte Signal $z(t)$ grün gezeichnet.
$z(t)$ ist eine ungerade Funktion in $t$ mit einer Sprungstelle bei $t =$ 0: Der Signalwert bei $t =$ 0 liegt genau in der Mitte zwischen dem links- und dem rechteckseitigem Grenzwert und ist somit 0. Für $t >$ 1 ms gilt ebenfalls $z(t) =$ 0, da das Gesamtsystem eine Hochpass-Charakteristik aufweist.
Richtig sind somit die $\rm \underline{ \ Vorschläge \ 2, \ 3 \ und \ 4}$.
e) Die Grafik zeigt die resultierende Impulsantwort $h_{\rm HP}(t)$ und die Sprungantwort $σ_{\rm HP}(t)$, die bei $t =$ 0 auf 1 springt und bis zum Zeitpunkt $t =$ 2 ms auf den Endwert 0 abklingt. Zum Zeitpunkt $t =$ 1 ms ergibt sich $σ_{\rm HP}(t) =$ 0.5.