Aufgaben:Aufgabe 3.6Z: Zwei imaginäre Pole: Unterschied zwischen den Versionen
Aus LNTwww
Zeile 11: | Zeile 11: | ||
entsprechend der Grafik (eine rote Nullstelle und zwei grüne Pole). | entsprechend der Grafik (eine rote Nullstelle und zwei grüne Pole). | ||
− | Das Signal $y(t)$ besitze dagegen die Laplace–Spektralfunktion | + | *Das Signal $y(t)$ besitze dagegen die Laplace–Spektralfunktion |
:$$Y_{\rm L}(p) = | :$$Y_{\rm L}(p) = | ||
\frac { 1} { p^2 + 4 \pi^2} | \frac { 1} { p^2 + 4 \pi^2} | ||
\hspace{0.05cm}.$$ | \hspace{0.05cm}.$$ | ||
− | Die rote Nullstelle gehört somit nicht zu $Y_{\rm L}(p)$. | + | :Die rote Nullstelle gehört somit nicht zu $Y_{\rm L}(p)$. |
− | Abschließend wird noch das Signal $z(t)$ mit der Laplace–Transformierten | + | *Abschließend wird noch das Signal $z(t)$ mit der Laplace–Transformierten |
:$$Z_{\rm L}(p) = | :$$Z_{\rm L}(p) = | ||
\frac { p} { (p-{\rm j} \cdot \beta)(p+{\rm j} \cdot \beta)} | \frac { p} { (p-{\rm j} \cdot \beta)(p+{\rm j} \cdot \beta)} | ||
\hspace{0.05cm}$$ | \hspace{0.05cm}$$ | ||
− | betrachtet, insbesondere der Grenzfall für $\beta → 0$. | + | :betrachtet, insbesondere der Grenzfall für $\beta → 0$. |
Zeile 27: | Zeile 27: | ||
− | + | Hinweise: | |
− | |||
− | |||
− | |||
*Die Aufgabe gehört zum Kapitel [[Lineare_zeitinvariante_Systeme/Laplace–Rücktransformation|Laplace–Rücktransformation]]. | *Die Aufgabe gehört zum Kapitel [[Lineare_zeitinvariante_Systeme/Laplace–Rücktransformation|Laplace–Rücktransformation]]. | ||
− | *Die Frequenzvariable $p$ ist so normiert, dass nach Anwendung des Residuensatzes die Zeit $t$ in Mikrosekunden angegeben ist. | + | *Die Frequenzvariable $p$ ist so normiert, dass nach Anwendung des Residuensatzes die Zeit $t$ in Mikrosekunden angegeben ist. |
*Ein Ergebnis $t = 1$ ist somit als $t = T$ mit $T = 1 \ \rm µ s$ zu interpretieren. | *Ein Ergebnis $t = 1$ ist somit als $t = T$ mit $T = 1 \ \rm µ s$ zu interpretieren. | ||
*Der [[Lineare_zeitinvariante_Systeme/Laplace–Rücktransformation#Formulierung_des_Residuensatzes|Residuensatz]] lautet am Beispiel der Funktion $X_{\rm L}(p)$ mit zwei einfachen Polstellen bei $ \pm {\rm j} \cdot \beta$: | *Der [[Lineare_zeitinvariante_Systeme/Laplace–Rücktransformation#Formulierung_des_Residuensatzes|Residuensatz]] lautet am Beispiel der Funktion $X_{\rm L}(p)$ mit zwei einfachen Polstellen bei $ \pm {\rm j} \cdot \beta$: | ||
Zeile 46: | Zeile 43: | ||
<quiz display=simple> | <quiz display=simple> | ||
− | {Berechnen Sie das Signal $x(t)$. Welche der folgenden Aussagen sind richtig? | + | {Berechnen Sie das Signal $x(t)$. Welche der folgenden Aussagen sind richtig? |
|type="[]"} | |type="[]"} | ||
+ $x(t)$ ist ein kausales Cosinussignal. | + $x(t)$ ist ein kausales Cosinussignal. | ||
- $x(t)$ ist ein kausales Sinussignal. | - $x(t)$ ist ein kausales Sinussignal. | ||
+ Die Amplitude von $x(t)$ ist $1$. | + Die Amplitude von $x(t)$ ist $1$. | ||
− | + Die Periodendauer von $x(t)$ ist $T = 1 \ \rm µ s$. | + | + Die Periodendauer von $x(t)$ ist $T = 1 \ \rm µ s$. |
− | {Berechnen Sie das Signal $y(t)$. Welche der folgenden Aussagen sind richtig? | + | {Berechnen Sie das Signal $y(t)$. Welche der folgenden Aussagen sind richtig? |
|type="[]"} | |type="[]"} | ||
- $y(t)$ ist ein kausales Cosinussignal. | - $y(t)$ ist ein kausales Cosinussignal. |
Version vom 9. Dezember 2021, 17:37 Uhr
In dieser Aufgabe betrachten wir ein kausales Signal $x(t)$ mit der Laplace–Transformierten
- $$X_{\rm L}(p) = \frac { p} { p^2 + 4 \pi^2}= \frac { p} { (p-{\rm j} \cdot 2\pi)(p+{\rm j} \cdot 2\pi)} \hspace{0.05cm}$$
entsprechend der Grafik (eine rote Nullstelle und zwei grüne Pole).
- Das Signal $y(t)$ besitze dagegen die Laplace–Spektralfunktion
- $$Y_{\rm L}(p) = \frac { 1} { p^2 + 4 \pi^2} \hspace{0.05cm}.$$
- Die rote Nullstelle gehört somit nicht zu $Y_{\rm L}(p)$.
- Abschließend wird noch das Signal $z(t)$ mit der Laplace–Transformierten
- $$Z_{\rm L}(p) = \frac { p} { (p-{\rm j} \cdot \beta)(p+{\rm j} \cdot \beta)} \hspace{0.05cm}$$
- betrachtet, insbesondere der Grenzfall für $\beta → 0$.
Hinweise:
- Die Aufgabe gehört zum Kapitel Laplace–Rücktransformation.
- Die Frequenzvariable $p$ ist so normiert, dass nach Anwendung des Residuensatzes die Zeit $t$ in Mikrosekunden angegeben ist.
- Ein Ergebnis $t = 1$ ist somit als $t = T$ mit $T = 1 \ \rm µ s$ zu interpretieren.
- Der Residuensatz lautet am Beispiel der Funktion $X_{\rm L}(p)$ mit zwei einfachen Polstellen bei $ \pm {\rm j} \cdot \beta$:
- $$x(t) = X_{\rm L}(p) \cdot (p - {\rm j} \cdot \beta) \cdot {\rm e}^{\hspace{0.03cm}p\hspace{0.05cm} \cdot \hspace{0.05cm}t} \Bigg |_{\hspace{0.1cm} p\hspace{0.05cm}=\hspace{0.05cm}{\rm j \hspace{0.05cm} \cdot\hspace{0.05cm} \it \beta}}+X_{\rm L}(p) \cdot (p + {\rm j} \cdot \beta) \cdot {\rm e}^{\hspace{0.03cm}p \hspace{0.05cm} \cdot\hspace{0.05cm}t} \Bigg |_{\hspace{0.1cm} p\hspace{0.05cm}=\hspace{0.05cm}{-\rm j \hspace{0.05cm} \cdot\hspace{0.05cm} \it \beta}} \hspace{0.05cm}.$$
Fragebogen
Musterlösung
(1) Richtig sind die Lösungsvorschläge 1, 3 und 4:
- Durch Anwendung des Residuensatzes erhält man für das Signal $x(t)$ bei positiven Zeiten:
- $$x_1(t)\hspace{0.25cm} = \hspace{0.2cm} {\rm Res} \bigg |_{p \hspace{0.05cm}= \hspace{0.05cm}p_{{\rm x}1}} \hspace{0.7cm}\{X_{\rm L}(p)\cdot {\rm e}^{\hspace{0.05cm}p \hspace{0.05cm}\cdot \hspace{0.05cm}t}\}= \frac {p} { p+{\rm j} \cdot 2\pi}\cdot {\rm e}^{\hspace{0.05cm}p \hspace{0.05cm}\cdot \hspace{0.05cm}t} \bigg |_{p \hspace{0.05cm}= \hspace{0.05cm}{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}2\pi}= \frac{1}{2} \cdot {\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.05cm} \cdot \hspace{0.05cm}2\pi t}\hspace{0.05cm} ,$$
- $$ x_2(t)\hspace{0.25cm} = \hspace{0.2cm} {\rm Res} \bigg |_{p \hspace{0.05cm}= \hspace{0.05cm}p_{{\rm x}2}} \hspace{0.7cm}\{X_{\rm L}(p)\cdot {\rm e}^{\hspace{0.05cm}p \hspace{0.05cm}\cdot \hspace{0.05cm} t}\}= \frac {p} { p-{\rm j} \cdot 2\pi}\cdot {\rm e}^{\hspace{0.05cm}p \hspace{0.05cm}\cdot \hspace{0.05cm}t} \bigg |_{p \hspace{0.05cm}= -{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}2\pi}= \frac{1}{2} \cdot {\rm e}^{-{\rm j} \hspace{0.05cm} \cdot \hspace{0.05cm}2\pi t} \hspace{0.05cm} .$$
- $$\Rightarrow \hspace{0.3cm} x(t) = x_1(t) + x_2(t) = {1}/{2} \cdot \left [ {\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.05cm} \cdot \hspace{0.05cm}2\pi t}+{\rm e}^{-{\rm j} \hspace{0.05cm} \cdot \hspace{0.05cm}2\pi t}\right ] = \cos(2\pi t) \hspace{0.05cm} .$$
(2) Richtig sind die Lösungsvorschläge 2 und 4:
- Prinzipiell könnte diese Teilaufgabe in gleicher Weise gelöst werden wie die Teilaufgabe (1).
- Man kann aber auch den Integrationssatz heranziehen.
- Dieser besagt unter anderem, dass die Multiplikation mit $1/p$ im Spektralbereich der Integration im Zeitbereich entspricht:
- $$Y_{\rm L}(p) = {1}/{p} \cdot X_{\rm L}(p) \hspace{0.3cm} \Rightarrow \hspace{0.3cm} t \ge 0:\quad y(t) = \int_{-\infty}^t \cos(2\pi \tau)\,\,{\rm d}\tau = {1}/({2\pi}) \cdot \sin(2\pi t) \hspace{0.05cm} .$$
Hinweis: Das kausale Cosinussignal $x(t)$ sowie das kausale Sinussignal $y(t)$ sind auf dem Angabenblatt zu Aufgabe 3.6 als $c_{\rm K}(t)$ bzw. $s_{\rm K}(t)$ dargestellt.
(3) Richtig sind die Lösungsvorschläge 1 und 3:
- Ein Vergleich mit der Berechnung von $x(t)$ zeigt, dass $z(t) = \cos (\beta \cdot t)$ für $t \ge 0$ und $z(t) = 0$ für $t < 0$ gilt.
- Der Grenzübergang für $\beta → 0$ führt damit zur Sprungfunktion $\gamma(t)$.
- Zum gleichen Ergebnis kommt man durch die Betrachtung im Spektralbereich:
- $$Z_{\rm L}(p) = \lim_{\beta \hspace{0.05cm} \rightarrow \hspace{0.05cm} 0}\hspace{0.1cm}\frac{p}{p^2 + \beta^2} = {1}/{p} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} z(t) = \gamma(t) \hspace{0.05cm} .$$