Aufgaben:Aufgabe 3.11: Auslöschungskanal: Unterschied zwischen den Versionen
Zeile 74: | Zeile 74: | ||
'''(1)''' Richtig ist also der <u>Lösungsvorschlag 2:</u> | '''(1)''' Richtig ist also der <u>Lösungsvorschlag 2:</u> | ||
* Aufgrund der Symmetrie der Übergangswahrscheinlichkeiten $P_{Y|X}(Y|X)$ ist offensichtlich, dass eine Gleichverteilung zur maximalen Transinformation $I(X; Y)$ und damit zur Kanalkapazität $C$ führen wird: | * Aufgrund der Symmetrie der Übergangswahrscheinlichkeiten $P_{Y|X}(Y|X)$ ist offensichtlich, dass eine Gleichverteilung zur maximalen Transinformation $I(X; Y)$ und damit zur Kanalkapazität $C$ führen wird: | ||
− | :$$ P_X(X) = P_X\big ( \hspace{0.03cm}X\hspace{-0.03cm}=1\hspace{0.03cm}, \hspace{0. | + | :$$ P_X(X) = P_X\big ( \hspace{0.03cm}X\hspace{-0.03cm}=1\hspace{0.03cm}, \hspace{0.08cm} X\hspace{-0.03cm}=2\hspace{0.03cm},\hspace{0.08cm}\text{...}\hspace{0.08cm}, X\hspace{-0.03cm}=M\hspace{0.03cm}\big ) = \big [\hspace{0.03cm}1/M\hspace{0.03cm}, \hspace{0.08cm} 1/M\hspace{0.03cm},\hspace{0.03cm}\text{...}\hspace{0.08cm},\hspace{0.08cm} 1/M\hspace{0.03cm}\big ]\hspace{0.05cm}$$ |
− | *Im Sonderfall $M = 2$ wäre auch $P_X(X) = (0.5, 0.5)$ richtig. | + | *Im Sonderfall $M = 2$ wäre auch $P_X(X) = (0.5, \ 0.5)$ richtig. |
+ | |||
'''(2)''' Zutreffend ist dementsprechend der <u>Lösungsvorschlag 3</u>, also genau $2M$ Verbindungen. Da: | '''(2)''' Zutreffend ist dementsprechend der <u>Lösungsvorschlag 3</u>, also genau $2M$ Verbindungen. Da: | ||
− | *Von jedem Quellensymbol $X = μ$ kommt man sowohl zum Sinkensymbol $Y = μ$ als auch zum Erasure $Y = \text{E}$. | + | *Von jedem Quellensymbol $X = μ$ kommt man sowohl zum Sinkensymbol $Y = μ$ als auch zum Erasure $Y = \text{E}$. |
− | '''(3)''' Alle Wahrscheinlichkeiten $Pr(Y = 1), \hspace{0.05cm} \text{...}\hspace{0.05cm} , Pr(Y = M)$ sind gleich groß. Damit erhält man für $μ = 1, \hspace{0.05cm} \text{...} \hspace{0.05cm} , M$: | + | |
+ | |||
+ | '''(3)''' Alle Wahrscheinlichkeiten $Pr(Y = 1), \hspace{0.05cm} \text{...}\hspace{0.05cm} , \hspace{0.08cm}Pr(Y = M)$ sind gleich groß. Damit erhält man für $μ = 1, \hspace{0.05cm} \text{...} \hspace{0.05cm} , \hspace{0.08cm} M$: | ||
:$${\rm Pr}(Y \hspace{-0.05cm} = \mu) = ( 1-\lambda)/M \hspace{0.05cm}$$ | :$${\rm Pr}(Y \hspace{-0.05cm} = \mu) = ( 1-\lambda)/M \hspace{0.05cm}$$ | ||
− | Außerdem kommt man von jedem Quellensymbol $X = 1, \hspace{0.05cm} \text{...}\hspace{0.05cm} , X = M$ auch zum Erasure $Y = \text{E}$: | + | *Außerdem kommt man von jedem Quellensymbol $X = 1, \hspace{0.05cm} \text{...}\hspace{0.05cm} , X = M$ auch zum Erasure $Y = \text{E}$: |
:$${\rm Pr}(Y \hspace{-0.05cm} = {\rm E}) = \lambda \hspace{0.05cm}$$ | :$${\rm Pr}(Y \hspace{-0.05cm} = {\rm E}) = \lambda \hspace{0.05cm}$$ | ||
− | Die Kontrolle ergibt, dass die Summe aller $M + 1$ Sinkensymbolwahrscheinlichkeiten tatsächlich $1$ ergibt. Daraus folgt für die Sinkenentropie | + | *Die Kontrolle ergibt, dass die Summe aller $M + 1$ Sinkensymbolwahrscheinlichkeiten tatsächlich $1$ ergibt. Daraus folgt für die Sinkenentropie |
:$$H(Y) = M \cdot \frac{ 1-\lambda }{M} \cdot {\rm log}_2 \hspace{0.1cm} \frac{M}{1 - \lambda} \hspace{0.15cm}+\hspace{0.15cm} \lambda \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{\lambda} \hspace{0.05cm}.$$ | :$$H(Y) = M \cdot \frac{ 1-\lambda }{M} \cdot {\rm log}_2 \hspace{0.1cm} \frac{M}{1 - \lambda} \hspace{0.15cm}+\hspace{0.15cm} \lambda \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{\lambda} \hspace{0.05cm}.$$ | ||
− | Zusammengefasst ergibt dies mit der binären Entropiefunktion: | + | *Zusammengefasst ergibt dies mit der binären Entropiefunktion: |
:$$H(Y) = (1-\lambda) \cdot {\rm log}_2 \hspace{0.1cm} M \hspace{0.15cm}+\hspace{0.15cm} H_{\rm bin} (\lambda ) \hspace{0.05cm}$$ | :$$H(Y) = (1-\lambda) \cdot {\rm log}_2 \hspace{0.1cm} M \hspace{0.15cm}+\hspace{0.15cm} H_{\rm bin} (\lambda ) \hspace{0.05cm}$$ | ||
− | und mit $M = 4$ sowie$ λ = 0.2$: | + | :und mit $M = 4$ sowie $ λ = 0.2$: |
− | :$$H(Y) = 1.6 \,{\rm bit} + H_{\rm bin} (0.2 ) \hspace{0.15cm} \underline {=2.322\,{\rm bit}} \hspace{0.05cm}$$ | + | :$$H(Y) = 1.6 \,{\rm bit} + H_{\rm bin} (0.2 ) \hspace{0.15cm} \underline {=2.322\,{\rm bit}} \hspace{0.05cm}.$$ |
+ | |||
+ | |||
+ | '''(4)''' Für die $2M$ Verbundwahrscheinlichkeiten ⇒ ${\rm Pr} \big[(X = μ) ∩ (Y = κ)\big] ≠ 0$ und die bedingten Wahrscheinlichkeiten ⇒ $pκ|μ = {\rm Pr}(Y = κ|X = μ)$ gilt: | ||
+ | * Die Kombination $p_{μκ} = (1 – λ)/M$ und $p_{κ|μ} = 1 – λ$ kommt $M$ mal vor. | ||
+ | * Die Kombination $p_{μκ} = λ/M$ und $p_{κ|μ} = λ$ kommt ebenfalls $M$ mal vor. | ||
− | |||
− | |||
− | |||
Daraus folgt: | Daraus folgt: | ||
:$$ H(Y \hspace{-0.1cm}\mid \hspace{-0.1cm} X) \hspace{-0.15cm} =\hspace{-0.15cm} M \cdot \frac{ 1-\lambda }{M} \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{1 - \lambda} \hspace{0.15cm}+\hspace{0.15cm}M \cdot \frac{ \lambda }{M} \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{ \lambda} = ( 1-\lambda) \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{1 - \lambda} \hspace{0.15cm}+\hspace{0.15cm} \lambda \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{ \lambda} = H_{\rm bin} (\lambda)\hspace{0.05cm}.$$ | :$$ H(Y \hspace{-0.1cm}\mid \hspace{-0.1cm} X) \hspace{-0.15cm} =\hspace{-0.15cm} M \cdot \frac{ 1-\lambda }{M} \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{1 - \lambda} \hspace{0.15cm}+\hspace{0.15cm}M \cdot \frac{ \lambda }{M} \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{ \lambda} = ( 1-\lambda) \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{1 - \lambda} \hspace{0.15cm}+\hspace{0.15cm} \lambda \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{ \lambda} = H_{\rm bin} (\lambda)\hspace{0.05cm}.$$ | ||
Das Ergebnis ist unabhängig von $M$. Mit $λ = 0.2$ erhält man: | Das Ergebnis ist unabhängig von $M$. Mit $λ = 0.2$ erhält man: | ||
− | $$H(Y \hspace{-0.1cm}\mid \hspace{-0.1cm} X) = H_{\rm bin} (0.2 ) \hspace{0.15cm} \underline {=0.722\,{\rm bit}} \hspace{0.05cm}$$ | + | :$$H(Y \hspace{-0.1cm}\mid \hspace{-0.1cm} X) = H_{\rm bin} (0.2 ) \hspace{0.15cm} \underline {=0.722\,{\rm bit}} \hspace{0.05cm}.$$ |
+ | |||
'''(5)''' Die Kanalkapazität $C$ ist gleich der maximalen Transinformation $I(X; Y)$, wobei die Maximierung hinsichtlich $P_X(X)$ bereits durch den symmetrischen Ansatz berücksichtigt wurde: | '''(5)''' Die Kanalkapazität $C$ ist gleich der maximalen Transinformation $I(X; Y)$, wobei die Maximierung hinsichtlich $P_X(X)$ bereits durch den symmetrischen Ansatz berücksichtigt wurde: | ||
:$$ C = \max_{P_X(X)} \hspace{0.15cm} I(X;Y) = H(Y) - H(Y \hspace{-0.1cm}\mid \hspace{-0.1cm} X) = ( 1-\lambda) \cdot {\rm log}_2 \hspace{0.1cm} M + H_{\rm bin} (\lambda) - H_{\rm bin} (\lambda) = ( 1-\lambda) \cdot {\rm log}_2 \hspace{0.1cm} M \hspace{0.05cm}$$ | :$$ C = \max_{P_X(X)} \hspace{0.15cm} I(X;Y) = H(Y) - H(Y \hspace{-0.1cm}\mid \hspace{-0.1cm} X) = ( 1-\lambda) \cdot {\rm log}_2 \hspace{0.1cm} M + H_{\rm bin} (\lambda) - H_{\rm bin} (\lambda) = ( 1-\lambda) \cdot {\rm log}_2 \hspace{0.1cm} M \hspace{0.05cm}$$ | ||
− | $$\Rightarrow \hspace{0.3cm} M = 4: \hspace{0.3cm} \underline {C=1.6\,\,{\rm bit}} \hspace{0.05cm}, \hspace{0.8cm} | + | :$$\Rightarrow \hspace{0.3cm} M = 4: \hspace{0.3cm} \underline {C=1.6\,\,{\rm bit}} \hspace{0.05cm}, \hspace{0.8cm} |
M \hspace{-0.15cm} =\hspace{-0.15cm} 2: \hspace{0.3cm} \underline {C=0.8\,\,{\rm bit}} \hspace{0.05cm}.$$ | M \hspace{-0.15cm} =\hspace{-0.15cm} 2: \hspace{0.3cm} \underline {C=0.8\,\,{\rm bit}} \hspace{0.05cm}.$$ | ||
Zeile 110: | Zeile 116: | ||
'''(6)''' Der ''Binary Erasure Channel'' (BEC) ist ein Sonderfall des hier betrachteten allgemeinen Modells mit $M = 2$: | '''(6)''' Der ''Binary Erasure Channel'' (BEC) ist ein Sonderfall des hier betrachteten allgemeinen Modells mit $M = 2$: | ||
:$$C_{\rm BEC} = 1-\lambda \hspace{0.05cm}$$ | :$$C_{\rm BEC} = 1-\lambda \hspace{0.05cm}$$ | ||
− | Richtig ist somit der <u>Lösungsvorschlag 1</u>. Der zweite Lösungsvorschlag gilt dagegen für den ''Binary Symmetric Channel'' (BSC) mit der Verfälschungswahrscheinlichkeit $λ$. | + | *Richtig ist somit der <u>Lösungsvorschlag 1</u>. |
+ | *Der zweite Lösungsvorschlag gilt dagegen für den ''Binary Symmetric Channel'' (BSC) mit der Verfälschungswahrscheinlichkeit $λ$. | ||
{{ML-Fuß}} | {{ML-Fuß}} |
Version vom 12. Oktober 2018, 10:31 Uhr
Betrachtet wird ein Auslöschungskanal mit
- den M Eingängen $x ∈ X = \{1, 2, \ \text{...} \ , M\}$, und
- den $M + 1$ Ausgängen $y ∈ Y = \{1, 2, \ \text{...} \ , M, \text{E}\}.$
Die Grafik zeigt das Modell für den Sonderfall $M = 4$. Das Sinkensymbol $y = \text{E}$ berücksichtigt eine Auslöschung (englisch: Erasure ) für den Fall, dass der Empfänger keine hinreichend gesicherte Entscheidung treffen kann.
Die Übergangswahrscheinlichkeiten sind für $1 ≤ μ ≤ M$ wie folgt gegeben:
- $${\rm Pr}(Y \hspace{-0.05cm} = \mu\hspace{-0.05cm}\mid \hspace{-0.05cm} X \hspace{-0.05cm}= \mu) = 1-\lambda \hspace{0.05cm},$$
- $${\rm Pr}(Y \hspace{-0.05cm} = {\rm E}\hspace{-0.05cm}\mid \hspace{-0.05cm} X \hspace{-0.05cm}= \mu) = \lambda \hspace{0.05cm}.$$
Gesucht werden:
- die Kapazität $C_{M\rm –EC}$ dieses M–ary Erasure Channels,
- die Kapazität $C_{\rm BEC}$ des Binary Erasure Channels als Sonderfall des obigen Modells,
Hinweise:
- Die Aufgabe gehört zum Kapitel Anwendung auf die Digitalsignalübertragung.
- Bezug genommen wird insbesondere auf die Seite Informationstheoretisches Modell der Digitalsignalübertragung.
- Im obigen Schaubild sind Auslöschungen (mit Wahrscheinlichkeit $λ$) blau gezeichnet.
- „Richtige Übertragungswege” (also von $X = μ$ nach $Y = μ$) sind blau dargestellt ($1 ≤ μ ≤ M$).
Fragebogen
Musterlösung
- Aufgrund der Symmetrie der Übergangswahrscheinlichkeiten $P_{Y|X}(Y|X)$ ist offensichtlich, dass eine Gleichverteilung zur maximalen Transinformation $I(X; Y)$ und damit zur Kanalkapazität $C$ führen wird:
- $$ P_X(X) = P_X\big ( \hspace{0.03cm}X\hspace{-0.03cm}=1\hspace{0.03cm}, \hspace{0.08cm} X\hspace{-0.03cm}=2\hspace{0.03cm},\hspace{0.08cm}\text{...}\hspace{0.08cm}, X\hspace{-0.03cm}=M\hspace{0.03cm}\big ) = \big [\hspace{0.03cm}1/M\hspace{0.03cm}, \hspace{0.08cm} 1/M\hspace{0.03cm},\hspace{0.03cm}\text{...}\hspace{0.08cm},\hspace{0.08cm} 1/M\hspace{0.03cm}\big ]\hspace{0.05cm}$$
- Im Sonderfall $M = 2$ wäre auch $P_X(X) = (0.5, \ 0.5)$ richtig.
(2) Zutreffend ist dementsprechend der Lösungsvorschlag 3, also genau $2M$ Verbindungen. Da:
- Von jedem Quellensymbol $X = μ$ kommt man sowohl zum Sinkensymbol $Y = μ$ als auch zum Erasure $Y = \text{E}$.
(3) Alle Wahrscheinlichkeiten $Pr(Y = 1), \hspace{0.05cm} \text{...}\hspace{0.05cm} , \hspace{0.08cm}Pr(Y = M)$ sind gleich groß. Damit erhält man für $μ = 1, \hspace{0.05cm} \text{...} \hspace{0.05cm} , \hspace{0.08cm} M$:
- $${\rm Pr}(Y \hspace{-0.05cm} = \mu) = ( 1-\lambda)/M \hspace{0.05cm}$$
- Außerdem kommt man von jedem Quellensymbol $X = 1, \hspace{0.05cm} \text{...}\hspace{0.05cm} , X = M$ auch zum Erasure $Y = \text{E}$:
- $${\rm Pr}(Y \hspace{-0.05cm} = {\rm E}) = \lambda \hspace{0.05cm}$$
- Die Kontrolle ergibt, dass die Summe aller $M + 1$ Sinkensymbolwahrscheinlichkeiten tatsächlich $1$ ergibt. Daraus folgt für die Sinkenentropie
- $$H(Y) = M \cdot \frac{ 1-\lambda }{M} \cdot {\rm log}_2 \hspace{0.1cm} \frac{M}{1 - \lambda} \hspace{0.15cm}+\hspace{0.15cm} \lambda \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{\lambda} \hspace{0.05cm}.$$
- Zusammengefasst ergibt dies mit der binären Entropiefunktion:
- $$H(Y) = (1-\lambda) \cdot {\rm log}_2 \hspace{0.1cm} M \hspace{0.15cm}+\hspace{0.15cm} H_{\rm bin} (\lambda ) \hspace{0.05cm}$$
- und mit $M = 4$ sowie $ λ = 0.2$:
- $$H(Y) = 1.6 \,{\rm bit} + H_{\rm bin} (0.2 ) \hspace{0.15cm} \underline {=2.322\,{\rm bit}} \hspace{0.05cm}.$$
(4) Für die $2M$ Verbundwahrscheinlichkeiten ⇒ ${\rm Pr} \big[(X = μ) ∩ (Y = κ)\big] ≠ 0$ und die bedingten Wahrscheinlichkeiten ⇒ $pκ|μ = {\rm Pr}(Y = κ|X = μ)$ gilt:
- Die Kombination $p_{μκ} = (1 – λ)/M$ und $p_{κ|μ} = 1 – λ$ kommt $M$ mal vor.
- Die Kombination $p_{μκ} = λ/M$ und $p_{κ|μ} = λ$ kommt ebenfalls $M$ mal vor.
Daraus folgt:
- $$ H(Y \hspace{-0.1cm}\mid \hspace{-0.1cm} X) \hspace{-0.15cm} =\hspace{-0.15cm} M \cdot \frac{ 1-\lambda }{M} \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{1 - \lambda} \hspace{0.15cm}+\hspace{0.15cm}M \cdot \frac{ \lambda }{M} \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{ \lambda} = ( 1-\lambda) \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{1 - \lambda} \hspace{0.15cm}+\hspace{0.15cm} \lambda \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{ \lambda} = H_{\rm bin} (\lambda)\hspace{0.05cm}.$$
Das Ergebnis ist unabhängig von $M$. Mit $λ = 0.2$ erhält man:
- $$H(Y \hspace{-0.1cm}\mid \hspace{-0.1cm} X) = H_{\rm bin} (0.2 ) \hspace{0.15cm} \underline {=0.722\,{\rm bit}} \hspace{0.05cm}.$$
(5) Die Kanalkapazität $C$ ist gleich der maximalen Transinformation $I(X; Y)$, wobei die Maximierung hinsichtlich $P_X(X)$ bereits durch den symmetrischen Ansatz berücksichtigt wurde:
- $$ C = \max_{P_X(X)} \hspace{0.15cm} I(X;Y) = H(Y) - H(Y \hspace{-0.1cm}\mid \hspace{-0.1cm} X) = ( 1-\lambda) \cdot {\rm log}_2 \hspace{0.1cm} M + H_{\rm bin} (\lambda) - H_{\rm bin} (\lambda) = ( 1-\lambda) \cdot {\rm log}_2 \hspace{0.1cm} M \hspace{0.05cm}$$
- $$\Rightarrow \hspace{0.3cm} M = 4: \hspace{0.3cm} \underline {C=1.6\,\,{\rm bit}} \hspace{0.05cm}, \hspace{0.8cm} M \hspace{-0.15cm} =\hspace{-0.15cm} 2: \hspace{0.3cm} \underline {C=0.8\,\,{\rm bit}} \hspace{0.05cm}.$$
(6) Der Binary Erasure Channel (BEC) ist ein Sonderfall des hier betrachteten allgemeinen Modells mit $M = 2$:
- $$C_{\rm BEC} = 1-\lambda \hspace{0.05cm}$$
- Richtig ist somit der Lösungsvorschlag 1.
- Der zweite Lösungsvorschlag gilt dagegen für den Binary Symmetric Channel (BSC) mit der Verfälschungswahrscheinlichkeit $λ$.