Aufgaben:Aufgabe 1.4Z: Summe von Ternärgrößen: Unterschied zwischen den Versionen
Aus LNTwww
Zeile 22: | Zeile 22: | ||
*Die Aufgabe gehört zum Kapitel [[Stochastische_Signaltheorie/Statistische_Abhängigkeit_und_Unabhängigkeit|Statistische Abhängigkeit und Unabhängigkeit]]. | *Die Aufgabe gehört zum Kapitel [[Stochastische_Signaltheorie/Statistische_Abhängigkeit_und_Unabhängigkeit|Statistische Abhängigkeit und Unabhängigkeit]]. | ||
− | *Eine Zusammenfassung der theoretischen Grundlagen mit Beispielen bringt das Lernvideo [[Statistische_Abhängigkeit_und_Unabhängigkeit_(Lernvideo)|Statistische Abhängigkeit und Unabhängigkeit]]. | + | *Eine Zusammenfassung der theoretischen Grundlagen mit Beispielen bringt das Lernvideo |
+ | :[[Statistische_Abhängigkeit_und_Unabhängigkeit_(Lernvideo)|Statistische Abhängigkeit und Unabhängigkeit]]. | ||
Zeile 49: | Zeile 50: | ||
===Musterlösung=== | ===Musterlösung=== | ||
{{ML-Kopf}} | {{ML-Kopf}} | ||
− | [[Datei:P_ID99__Sto_Z_1_4_a.png|right|Ternärgrößen im Venndiagramm]] | + | [[Datei:P_ID99__Sto_Z_1_4_a.png|right|frame|Ternärgrößen im Venndiagramm]] |
− | In | + | In nebenstehender Grafik sind |
*die drei zum Ereignis $„x > 0“$ gehörenden Felder violett umrandet, | *die drei zum Ereignis $„x > 0“$ gehörenden Felder violett umrandet, | ||
* die Felder für $„s > 0“$ gelb hinterlegt. | * die Felder für $„s > 0“$ gelb hinterlegt. | ||
+ | |||
Alle gesuchten Wahrscheinlichkeiten können hier mit Hilfe der klassischen Definition ermittelt werden. | Alle gesuchten Wahrscheinlichkeiten können hier mit Hilfe der klassischen Definition ermittelt werden. | ||
Zeile 58: | Zeile 60: | ||
'''(1)''' Dieses Ereignis ist durch die gelb hinterlegten Felder gekennzeichnet: | '''(1)''' Dieses Ereignis ist durch die gelb hinterlegten Felder gekennzeichnet: | ||
:$$\rm Pr (\it s > \rm 0) = \rm 4/9 \hspace{0.15cm}\underline { \approx \rm 0.444}.$$ | :$$\rm Pr (\it s > \rm 0) = \rm 4/9 \hspace{0.15cm}\underline { \approx \rm 0.444}.$$ | ||
+ | |||
'''(2)''' Hier gilt folgender Sachverhalt: | '''(2)''' Hier gilt folgender Sachverhalt: | ||
− | :$$\rm Pr[(\it x > \rm 0) \cap (\it s>\rm 0) ] = \rm Pr(\it x > \rm 0) =\rm 3/9\hspace{0.15cm}\underline { \approx \rm 0.333}. $$ | + | :$$\rm Pr \big[(\it x > \rm 0) \cap (\it s>\rm 0) \big ] = \rm Pr(\it x > \rm 0) =\rm 3/9\hspace{0.15cm}\underline { \approx \rm 0.333}. $$ |
+ | |||
+ | |||
+ | '''(3)''' Mit den Ergebnissen der Teilaufgaben '''(1)''' und '''(2)''' folgt: | ||
+ | :$$\rm Pr \big[(\it x > \rm 0) \hspace{0.05cm}| \hspace{0.05cm} (\it s > \rm 0)\big] = \frac{{\rm Pr} [(\it x > \rm 0) \cap (\it s > \rm 0)]}{{\rm Pr}(\it s > \rm 0)}= \frac{3/9}{4/9}\hspace{0.15cm}\underline {= 0.75}.$$ | ||
− | |||
− | |||
− | '''(4)''' Analog zur Teilaufgabe (3) gilt nun: | + | '''(4)''' Analog zur Teilaufgabe '''(3)''' gilt nun: |
− | :$$\rm Pr(\it s > \rm 0 \hspace{0.05cm} | \hspace{0.05cm} \it x > \rm 0)=\frac{Pr[(\it x > \rm 0) \cap (\it s > \rm 0)]}{Pr(\it x >\rm 0)}=\rm \frac{3/9}{3/9}\hspace{0.15cm}\underline {= 1}.$$ | + | :$$\rm Pr(\it s > \rm 0 \hspace{0.05cm} | \hspace{0.05cm} \it x > \rm 0)=\frac{Pr \big[(\it x > \rm 0) \cap (\it s > \rm 0) \big]}{Pr(\it x >\rm 0)}=\rm \frac{3/9}{3/9}\hspace{0.15cm}\underline {= 1}.$$ |
{{ML-Fuß}} | {{ML-Fuß}} | ||
Version vom 1. August 2018, 13:01 Uhr
Gegeben seien die ternären Zufallsgrößen
- $$x ∈ {–2, \ 0, +2},$$
- $$y ∈ {–1, \ 0, +1}.$$
Diese beiden Ternärwerte treten jeweils mit gleicher Wahrscheinlichkeit auf. Daraus wird als eine neue Zufallsgröße die Summe $s = x + y$ gebildet.
Das nebenstehendes Schema zeigt, dass die Summe $s$ alle ganzzahligen Werte zwischen $–3$ und $+3$ annehmen kann:
- $$ s \in \{-3, -2, -1, \ 0, +1, +2, +3\}.$$
Hinweise:
- Die Aufgabe gehört zum Kapitel Statistische Abhängigkeit und Unabhängigkeit.
- Eine Zusammenfassung der theoretischen Grundlagen mit Beispielen bringt das Lernvideo
Fragebogen
Musterlösung
In nebenstehender Grafik sind
- die drei zum Ereignis $x > 0$ gehörenden Felder violett umrandet,
- die Felder für $s > 0$ gelb hinterlegt.
Alle gesuchten Wahrscheinlichkeiten können hier mit Hilfe der klassischen Definition ermittelt werden.
(1) Dieses Ereignis ist durch die gelb hinterlegten Felder gekennzeichnet:
- $$\rm Pr (\it s > \rm 0) = \rm 4/9 \hspace{0.15cm}\underline { \approx \rm 0.444}.$$
(2) Hier gilt folgender Sachverhalt:
- $$\rm Pr \big[(\it x > \rm 0) \cap (\it s>\rm 0) \big ] = \rm Pr(\it x > \rm 0) =\rm 3/9\hspace{0.15cm}\underline { \approx \rm 0.333}. $$
(3) Mit den Ergebnissen der Teilaufgaben (1) und (2) folgt:
- $$\rm Pr \big[(\it x > \rm 0) \hspace{0.05cm}| \hspace{0.05cm} (\it s > \rm 0)\big] = \frac{{\rm Pr} [(\it x > \rm 0) \cap (\it s > \rm 0)]}{{\rm Pr}(\it s > \rm 0)}= \frac{3/9}{4/9}\hspace{0.15cm}\underline {= 0.75}.$$
(4) Analog zur Teilaufgabe (3) gilt nun:
- $$\rm Pr(\it s > \rm 0 \hspace{0.05cm} | \hspace{0.05cm} \it x > \rm 0)=\frac{Pr \big[(\it x > \rm 0) \cap (\it s > \rm 0) \big]}{Pr(\it x >\rm 0)}=\rm \frac{3/9}{3/9}\hspace{0.15cm}\underline {= 1}.$$