Aufgaben:Aufgabe 3.6Z: Komplexe Exponentialfunktion: Unterschied zwischen den Versionen
Zeile 48: | Zeile 48: | ||
===Musterlösung=== | ===Musterlösung=== | ||
{{ML-Kopf}} | {{ML-Kopf}} | ||
− | '''1 | + | '''(1)''' $G(f)$ ist die Spektralfunktion eines Cosinussignals mit der Periodendauer $T_0 = 1/f_0 = 8 \, \mu\text {s}$: |
:$$g( t ) = A \cdot \cos ( {2{\rm{\pi }}f_0 t} ).$$ | :$$g( t ) = A \cdot \cos ( {2{\rm{\pi }}f_0 t} ).$$ | ||
Bei $t = 1 \, \mu\text {s}$ ist der Signalwert gleich $A \cdot \cos(\pi /4)$: | Bei $t = 1 \, \mu\text {s}$ ist der Signalwert gleich $A \cdot \cos(\pi /4)$: | ||
− | *Realteil $\text{Re}[g(t = 1 \, \mu \text {s})] = \;\underline{0.707\, \text{V}}$, | + | *Der Realteil ist $\text{Re}[g(t = 1 \, \mu \text {s})] = \;\underline{0.707\, \text{V}}$, |
− | *Imaginärteil $\text{Im}[g(t = 1 \, \mu \text {s})] = \;\underline{0.}$ | + | *der Imaginärteil ist $\text{Im}[g(t = 1 \, \mu \text {s})] = \;\underline{0.}$ |
− | '''2 | + | |
− | :$$A \cdot {\rm \delta} ( f )\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, A$$ | + | '''(2)''' Ausgehend von der Fourierkorrespondenz |
+ | :$$A \cdot {\rm \delta} ( f )\ \ \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \ \ A$$ | ||
erhält man durch zweimalige Anwendung des Verschiebungssatzes (im Frequenzbereich): | erhält man durch zweimalige Anwendung des Verschiebungssatzes (im Frequenzbereich): | ||
− | :$$U( f ) = {A}/{2} \cdot \delta ( {f - f_0 } ) - {A}/{2} \cdot \delta ( {f + f_0 } )\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, u( t ) = {A}/{2} \cdot \left( {{\rm{e}}^{{\rm{j}}2{\rm{\pi }}f_0 t} - {\rm{e}}^{{\rm{ - j}}2{\rm{\pi }}f_0 t} } \right).$$ | + | :$$U( f ) = {A}/{2} \cdot \delta ( {f - f_0 } ) - {A}/{2} \cdot \delta ( {f + f_0 } )\ \ \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \ \ u( t ) = {A}/{2} \cdot \left( {{\rm{e}}^{{\rm{j}}2{\rm{\pi }}f_0 t} - {\rm{e}}^{{\rm{ - j}}2{\rm{\pi }}f_0 t} } \right).$$ |
Nach dem [[Signaldarstellung/Zum_Rechnen_mit_komplexen_Zahlen#Darstellung_nach_Betrag_und_Phase|Satz von Euler]] kann hierfür auch geschrieben werden: | Nach dem [[Signaldarstellung/Zum_Rechnen_mit_komplexen_Zahlen#Darstellung_nach_Betrag_und_Phase|Satz von Euler]] kann hierfür auch geschrieben werden: | ||
:$$u( t ) = {\rm{j}} \cdot A \cdot \sin ( {2{\rm{\pi }}f_0 t} ).$$ | :$$u( t ) = {\rm{j}} \cdot A \cdot \sin ( {2{\rm{\pi }}f_0 t} ).$$ | ||
− | *Der <u>Realteil dieses Signals ist stets | + | *Der <u>Realteil dieses Signals ist stets Null</u>. |
*Bei $t = 1 \, \mu\text {s}$ gilt für den Imaginärteil: $\text{Im}[g(t = 1 \, \mu \text {s})] = \;\underline{0.707\, \text{V}}$. | *Bei $t = 1 \, \mu\text {s}$ gilt für den Imaginärteil: $\text{Im}[g(t = 1 \, \mu \text {s})] = \;\underline{0.707\, \text{V}}$. | ||
− | '''3 | + | |
+ | '''(3)''' Wegen $X(f) = G(f) + U(f)$ gilt auch: | ||
:$$x(t) = g(t) + u(t) = A \cdot \cos ( {2{\rm{\pi }}f_0 t} ) + {\rm{j}} \cdot A \cdot \sin( {2{\rm{\pi }}f_0 t} ).$$ | :$$x(t) = g(t) + u(t) = A \cdot \cos ( {2{\rm{\pi }}f_0 t} ) + {\rm{j}} \cdot A \cdot \sin( {2{\rm{\pi }}f_0 t} ).$$ | ||
Dieses Ergebnis kann mit dem [[Signaldarstellung/Zum_Rechnen_mit_komplexen_Zahlen#Darstellung_nach_Betrag_und_Phase|Satz von Euler]] wie folgt zusammengefasst werden: | Dieses Ergebnis kann mit dem [[Signaldarstellung/Zum_Rechnen_mit_komplexen_Zahlen#Darstellung_nach_Betrag_und_Phase|Satz von Euler]] wie folgt zusammengefasst werden: | ||
:$$x(t) = A \cdot {\rm{e}}^{{\rm{j}}2{\rm{\pi }}f_0 t} .$$ | :$$x(t) = A \cdot {\rm{e}}^{{\rm{j}}2{\rm{\pi }}f_0 t} .$$ | ||
− | Richtig sind die vorgegebenen <u>Alternativen 1 und 3</u> | + | Richtig sind die vorgegebenen <u>Alternativen 1 und 3</u>: |
*Das Signal dreht in der komplexen Ebene in mathematisch positiver Richtung, also entgegen dem Uhrzeigersinn. | *Das Signal dreht in der komplexen Ebene in mathematisch positiver Richtung, also entgegen dem Uhrzeigersinn. | ||
*Für eine Umdrehung benötigt der „Zeiger” die Periodendauer $T_0 = 1/f_0 = 8 \, \mu\text {s}$. | *Für eine Umdrehung benötigt der „Zeiger” die Periodendauer $T_0 = 1/f_0 = 8 \, \mu\text {s}$. |
Version vom 17. Januar 2018, 16:50 Uhr
In Zusammenhang mit den Bandpass-Systemen wird oft mit einseitigen Spektren gearbeitet. In der Abbildung sehen Sie eine solche einseitige Spektralfunktion ${X(f)}$, die ein komplexes Zeitsignal ${x(t)}$ zur Folge hat.
In der unteren Skizze ist ${X(f)}$ in einen – bezüglich der Frequenz – geraden Anteil ${G(f)}$ sowie einen ungeraden Anteil ${U(f)}$ aufgespaltet.
Hinweise:
- Die Aufgabe gehört zum Kapitel Gesetzmäßigkeiten der Fouriertransformation.
- Alle dort dargelegten Gesetzmäßigkeiten werden im Lernvideo Gesetzmäßigkeiten der Fouriertransformation an Beispielen verdeutlicht.
- Lösen Sie diese Aufgabe mit Hilfe des Zuordnungssatzes und des Verschiebungssatzes.
- Verwenden Sie für die beiden ersten Teilaufgaben die Signalparameter $A = 1\, \text{V}$ und $f_0 = 125 \,\text{kHz}.$
- Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
Fragebogen
Musterlösung
- $$g( t ) = A \cdot \cos ( {2{\rm{\pi }}f_0 t} ).$$
Bei $t = 1 \, \mu\text {s}$ ist der Signalwert gleich $A \cdot \cos(\pi /4)$:
- Der Realteil ist $\text{Re}[g(t = 1 \, \mu \text {s})] = \;\underline{0.707\, \text{V}}$,
- der Imaginärteil ist $\text{Im}[g(t = 1 \, \mu \text {s})] = \;\underline{0.}$
(2) Ausgehend von der Fourierkorrespondenz
- $$A \cdot {\rm \delta} ( f )\ \ \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \ \ A$$
erhält man durch zweimalige Anwendung des Verschiebungssatzes (im Frequenzbereich):
- $$U( f ) = {A}/{2} \cdot \delta ( {f - f_0 } ) - {A}/{2} \cdot \delta ( {f + f_0 } )\ \ \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \ \ u( t ) = {A}/{2} \cdot \left( {{\rm{e}}^{{\rm{j}}2{\rm{\pi }}f_0 t} - {\rm{e}}^{{\rm{ - j}}2{\rm{\pi }}f_0 t} } \right).$$
Nach dem Satz von Euler kann hierfür auch geschrieben werden:
- $$u( t ) = {\rm{j}} \cdot A \cdot \sin ( {2{\rm{\pi }}f_0 t} ).$$
- Der Realteil dieses Signals ist stets Null.
- Bei $t = 1 \, \mu\text {s}$ gilt für den Imaginärteil: $\text{Im}[g(t = 1 \, \mu \text {s})] = \;\underline{0.707\, \text{V}}$.
(3) Wegen $X(f) = G(f) + U(f)$ gilt auch:
- $$x(t) = g(t) + u(t) = A \cdot \cos ( {2{\rm{\pi }}f_0 t} ) + {\rm{j}} \cdot A \cdot \sin( {2{\rm{\pi }}f_0 t} ).$$
Dieses Ergebnis kann mit dem Satz von Euler wie folgt zusammengefasst werden:
- $$x(t) = A \cdot {\rm{e}}^{{\rm{j}}2{\rm{\pi }}f_0 t} .$$
Richtig sind die vorgegebenen Alternativen 1 und 3:
- Das Signal dreht in der komplexen Ebene in mathematisch positiver Richtung, also entgegen dem Uhrzeigersinn.
- Für eine Umdrehung benötigt der „Zeiger” die Periodendauer $T_0 = 1/f_0 = 8 \, \mu\text {s}$.