Aufgaben:Aufgabe 4.1: Zum „Log Likelihood Ratio”: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
Zeile 39: Zeile 39:
  
 
''Hinweis:''
 
''Hinweis:''
* Die Aufgabe bezieht sich auf die ersten Seiten des Kapitels [[...]].
+
* Die Aufgabe bezieht sich auf die ersten Seiten des Kapitels [[Kanalcodierung/Soft%E2%80%93in_Soft%E2%80%93out_Decoder#Hard_Decision_vs._Soft_Decision| Soft–in Soft–out Decoder]].
 
* In den letzten Teilaufgaben ist zu klären, ob die gefundenen Zusammenhänge zwischen $L_{\rm A}, \ L_{\rm V}$ und $L_{\rm R}$ auch auf den unten skizzierten „2–auf–$M$–Kanal” übertragen werden können. Hierzu wählen wir für die Eingangssymbole eine bipolare Betrachtungsweise: „$0$” → „$+1$” sowie „1” → „$–1”.
 
* In den letzten Teilaufgaben ist zu klären, ob die gefundenen Zusammenhänge zwischen $L_{\rm A}, \ L_{\rm V}$ und $L_{\rm R}$ auch auf den unten skizzierten „2–auf–$M$–Kanal” übertragen werden können. Hierzu wählen wir für die Eingangssymbole eine bipolare Betrachtungsweise: „$0$” → „$+1$” sowie „1” → „$–1”.
  

Version vom 6. Dezember 2017, 09:27 Uhr

Betrachtete Kanalmodelle

Zur Interpretation von Log–Likelihood–Verhältnissen (kurz $L$–Werten) gehen wir wie im Theorieteil vom Binary Symmetric Channel (BSC) aus. Die englische Bezeichung ist Log Likelihood Ratio (LLR).

Für die binären Zufallsgrößen am Eingang und Ausgang gelte

$$x \in \{0\hspace{0.05cm}, 1\} \hspace{0.05cm},\hspace{0.25cm}y \in \{0\hspace{0.05cm}, 1\} \hspace{0.05cm}. $$

Dieses Modell ist in der oberen Grafik dargestellt und wird im Folgenden als Modell A bezeichnet. Für die bedingten Wahrscheinlichkeiten in Vorwärtsrichtung gilt:

$${\rm Pr}(y = 1\hspace{0.05cm}|\hspace{0.05cm} x = 0) \hspace{-0.2cm} \ = \ \hspace{-0.2cm} {\rm Pr}(y = 0\hspace{0.05cm}|\hspace{0.05cm} x = 1) = \varepsilon \hspace{0.05cm},$$
$${\rm Pr}(y = 0\hspace{0.05cm}|\hspace{0.05cm} x = 0) \hspace{-0.2cm} \ = \ \hspace{-0.2cm} {\rm Pr}(y = 1\hspace{0.05cm}|\hspace{0.05cm} x = 1) = 1-\varepsilon \hspace{0.05cm}.$$

Die Verfälschungswahrscheinlichkeit $\epsilon$ ist der entscheidende Parameter des BSC–Modells.

Bezüglich der Wahrscheinlichkeitsverteilung am Eingang ist es zweckmäßig, anstelle der Wahrscheinlichkeiten ${\rm Pr}(x = 0)$ und ${\rm Pr}(x = 1)$ das Log Likelihood Ratio (LLR) zu betrachten.

Für dieses gilt bei der hier verwendeten unipolaren Betrachtungsweise per Definition:

$$L_{\rm A}(x)={\rm ln} \hspace{0.15cm} \frac{{\rm Pr}(x = 0)}{{\rm Pr}(x = 1)}\hspace{0.05cm},$$

wobei der Index „A” auf die Apriori–Wahrscheinlichkeit hinweist.

Beispielsweise ergibt sich für ${\rm Pr}(x = 0) = 0.2 \ \Rightarrow \ {\rm Pr}(x = 1) = 0.8$ das Apriori–LLR $L_{\rm A}(x) = \, –1.382$.

Aus dem BSC–Modell lässt sich zudem der $L$–Wert der bedingten Wahrscheinlichkeiten ${\rm Pr}(y|x)$ in Vorwärtsrichtung ermitteln, der in der vorliegenden Aufgabe auch mit $L_{\rm V}(y)$ bezeichnet wird:

$$L_{\rm V}(y) = L(y\hspace{0.05cm}|\hspace{0.05cm}x) = {\rm ln} \hspace{0.15cm} \frac{{\rm Pr}(y\hspace{0.05cm}|\hspace{0.05cm}x = 0)}{{\rm Pr}(y\hspace{0.05cm}|\hspace{0.05cm}x = 1)} = \left\{ \begin{array}{c} {\rm ln} \hspace{0.15cm} [(1 - \varepsilon)/\varepsilon]\\ {\rm ln} \hspace{0.15cm} [\varepsilon/(1 - \varepsilon)] \end{array} \right.\hspace{0.15cm} \begin{array}{*{1}c} {\rm f\ddot{u}r} \hspace{0.05cm} y = 0, \\ {\rm f\ddot{u}r} \hspace{0.15cm} y = 1. \\ \end{array}$$

Beispielsweise ergibt sich für $\epsilon = 0.1$:

$$L_{\rm V}(y = 0) = +2.197\hspace{0.05cm}, \hspace{0.3cm}L_{\rm V}(y = 1) = -2.197\hspace{0.05cm}.$$

Von besonderer Bedeutung für die Codierungstheorie sind die Rückschlusswahrscheinlichkeiten ${\rm Pr}(x|y)$, die mit den Vorwärtswahrscheinlichkeiten ${\rm Pr}(y|x)$ sowie den Eingangswahrscheinlichkeiten ${\rm Pr}(x = 0)$ und ${\rm Pr}(x = 1)$ über den Satz von Bayes in Zusammenhang stehen. Der entsprechende $L$–Wert wird in dieser Aufgabe mit $L_{\rm R}(y)$ bezeichnet:

$$L_{\rm R}(y) = L(x\hspace{0.05cm}|\hspace{0.05cm}y) = {\rm ln} \hspace{0.15cm} \frac{{\rm Pr}(x = 0)\hspace{0.05cm}|\hspace{0.05cm}y)}{{\rm Pr}(x = 1)\hspace{0.05cm}|\hspace{0.05cm}y)} \hspace{0.05cm} .$$

Hinweis:

  • Die Aufgabe bezieht sich auf die ersten Seiten des Kapitels Soft–in Soft–out Decoder.
  • In den letzten Teilaufgaben ist zu klären, ob die gefundenen Zusammenhänge zwischen $L_{\rm A}, \ L_{\rm V}$ und $L_{\rm R}$ auch auf den unten skizzierten „2–auf–$M$–Kanal” übertragen werden können. Hierzu wählen wir für die Eingangssymbole eine bipolare Betrachtungsweise: „$0$” → „$+1$” sowie „1” → „$–1”.


Fragebogen

1

Multiple-Choice

correct
false

2

Input-Box Frage

$xyz \ = \ $

$ab$


Musterlösung

(1)  (2)  (3)  (4)  (5)