Aufgaben:Aufgabe 1.08Z: Äquivalente Codes: Unterschied zwischen den Versionen
Wael (Diskussion | Beiträge) |
Wael (Diskussion | Beiträge) |
||
Zeile 78: | Zeile 78: | ||
===Musterlösung=== | ===Musterlösung=== | ||
{{ML-Kopf}} | {{ML-Kopf}} | ||
− | '''1 | + | '''(1)''' ür einen systematischen (6, 3)–Blockcode muss gelten |
− | + | ||
− | '''3. | + | :$$\underline{x} = ( x_1, x_2, x_3, x_4, x_5, x_6) = ( u_1, u_2, u_3, p_1, p_2, p_{3}) \hspace{0.05cm}.$$ |
− | ''' | + | |
+ | Diese Bedingung erfüllen die Codes A, C und D ⇒ <u>Antwort 1, 2, 4</u>. | ||
+ | |||
+ | '''(2)''' Nur Code A und Code B sind identische Codes ⇒ <u>Antwort 1</u>. Sie beinhalten genau die gleichen Codeworte und unterscheiden sich nur durch andere Zuordnungen $\underline{u} → \underline{x}$. Wie in der Musterlösung zur [[Aufgaben:1.08_Identische_Codes|Aufgabe A1.08 (3)]] angegeben, gelangt man von der Generatormatrix ${ \boldsymbol{\rm G}}_{\rm B}$ zur Generatormatrix ${ \boldsymbol{\rm G}}_{\rm A}$ allein durch Vertauschen/Permutieren von Zeilen oder durch Ersetzen einer Zeile durch die Linearkombination zwischen dieser Zeile und einer anderen. | ||
+ | |||
+ | '''(3)''' | ||
'''5.''' | '''5.''' | ||
'''6.''' | '''6.''' |
Version vom 2. Dezember 2017, 14:25 Uhr
In der Grafik sind die Zuordnungen $\underline{u} → \underline{x}$ für verschiedene Codes angegeben, die im Folgenden jeweils durch die Generatormatrix G und die Prüfmatrix H charakterisiert werden:
- $\color{red}{\boldsymbol{\rm Code \ A}}$:
- $${ \boldsymbol{\rm G}}_{\rm A} = \begin{pmatrix} 1 &0 &0 &1 &1 &0\\ 0 &1 &0 &1 &0 &1\\ 0 &0 &1 &0 &1 &1 \end{pmatrix} \hspace{0.05cm},$$
- $${ \boldsymbol{\rm H}}_{\rm A} = \begin{pmatrix} 1 &1 &0 &1 &0 &0\\ 1 &0 &1 &0 &1 &0\\ 0 &1 &1 &0 &0 &1 \end{pmatrix} \hspace{0.05cm}.$$
- $\color{red}{\boldsymbol{\rm Code \ B}}$:
- $${ \boldsymbol{\rm G}}_{\rm B} = \begin{pmatrix} 0 &0 &1 &0 &1 &1\\ 1 &0 &0 &1 &1 &0\\ 0 &1 &1 &1 &1 &0 \end{pmatrix} \hspace{0.05cm},$$
- $$ { \boldsymbol{\rm H}}_{\rm B} = \begin{pmatrix} 1 &0 &1 &0 &1 &0\\ 1 &1 &0 &1 &0 &0\\ 0 &1 &1 &0 &0 &1 \end{pmatrix} \hspace{0.05cm}.$$
- $\color{red}{\boldsymbol{\rm Code \ C}}$:
- $${ \boldsymbol{\rm G}}_{\rm C} = \begin{pmatrix} 1 &0 &0 &1 &0 &1\\ 0 &1 &0 &0 &1 &1\\ 0 &0 &1 &1 &1 &1 \end{pmatrix} \hspace{0.05cm},{ \boldsymbol{\rm H}}_{\rm C} = \begin{pmatrix} 1 &0 &1 &1 &0 &0\\ 0 &1 &1 &0 &1 &0\\ 1 &1 &1 &0 &0 &1 \end{pmatrix} \hspace{0.05cm},$$
- $\color{red}{\boldsymbol{\rm Code \ D}}$:
- $${ \boldsymbol{\rm G}}_{\rm D} = \begin{pmatrix} 1 &0 &0 &1 &0 &1\\ 0 &1 &0 &1 &0 &0\\ 0 &0 &1 &0 &1 &0 \end{pmatrix} \hspace{0.05cm},{ \boldsymbol{\rm H}}_{\rm D} = \begin{pmatrix} 1 &1 &0 &1 &0 &0\\ 0 &0 &1 &0 &1 &0\\ 1 &0 &0 &0 &0 &1 \end{pmatrix} \hspace{0.05cm}.$$
In dieser Aufgabe soll untersucht werden, welche dieser Codes bzw. Codepaare
- systematisch sind,
- identisch sind (das heißt: Verschiedene Codes haben gleiche Codeworte),
- äquivalent sind (das heißt: Verschiedene Codes haben gleiche Codeparameter).
Hinweis :
Die Aufgabe gehört zum Themengebiet von Kapitel Allgemeine Beschreibung linearer Blockcodes Anzumerken ist, dass die Angabe einer Prüfmatrix H nicht eindeutig ist. Verändert man die Reihenfolge der Prüfgleichungen, so entspricht dies einer Vertauschung von Zeilen.
Fragebogen
Musterlösung
- $$\underline{x} = ( x_1, x_2, x_3, x_4, x_5, x_6) = ( u_1, u_2, u_3, p_1, p_2, p_{3}) \hspace{0.05cm}.$$
Diese Bedingung erfüllen die Codes A, C und D ⇒ Antwort 1, 2, 4.
(2) Nur Code A und Code B sind identische Codes ⇒ Antwort 1. Sie beinhalten genau die gleichen Codeworte und unterscheiden sich nur durch andere Zuordnungen $\underline{u} → \underline{x}$. Wie in der Musterlösung zur Aufgabe A1.08 (3) angegeben, gelangt man von der Generatormatrix ${ \boldsymbol{\rm G}}_{\rm B}$ zur Generatormatrix ${ \boldsymbol{\rm G}}_{\rm A}$ allein durch Vertauschen/Permutieren von Zeilen oder durch Ersetzen einer Zeile durch die Linearkombination zwischen dieser Zeile und einer anderen.
(3) 5. 6. 7.