Aufgaben:Aufgabe 2.4: Dualcodierung und Graycodierung: Unterschied zwischen den Versionen
Zeile 28: | Zeile 28: | ||
<quiz display=simple> | <quiz display=simple> | ||
− | { | + | {Welches der Signale $s_{1}(t)$ bzw. $s_{2}(t)$ verwendet eine Graycodierung? |
+ | |type="[]"} | ||
+ | +$s_{1}(t)$ verwendet eine Graycodierung. | ||
+ | -$s_{2}(t)$ verwendet eine Graycodierung. | ||
+ | |||
+ | {Bestimmen Sie den Rauscheffektivwert aus der angegebenen Bedingung. | ||
+ | |type="{}"} | ||
+ | $\sigma_{d} \ = \ $ { 0.43 3% } $\ \rm V$ | ||
+ | |||
+ | {Welche Symbolfehlerwahrscheinlichkeit ergibt sich mit dem Graycode? | ||
|type="{}"} | |type="{}"} | ||
− | $ \rm | + | $p_{\rm S} \ = \ $ { 1.5 3% } $\ \%$ |
− | $ \ | ||
− | { | + | {Welche Bitfehlerwahrscheinlichkeit ergibt sich mit dem Graycode? |
|type="{}"} | |type="{}"} | ||
− | $p_{\rm | + | $p_{\rm B} \ = \ $ { 0.75 3% } $\ \%$ |
− | { | + | {Welche Symbolfehlerwahrscheinlichkeit ergibt sich mit dem Dualcode? |
|type="{}"} | |type="{}"} | ||
− | $p_{\rm | + | $p_{\rm S} \ = \ $ { 1.5 3% } $\ \%$ |
− | { | + | {Welche Bitfehlerwahrscheinlichkeit ergibt sich mit dem Dualcode? |
|type="{}"} | |type="{}"} | ||
− | $p_{\rm B} \ = \ $ { | + | $p_{\rm B} \ = \ $ { 1 3% } $\ \%$ |
</quiz> | </quiz> |
Version vom 10. November 2017, 14:40 Uhr
Die beiden dargestellten Signale $s_{1}(t)$ und $s_{2}(t)$ sind zwei unterschiedliche Realisierungen eines redundanzfreien quaternären Sendesignals, die beide vom blau gezeichneten Quellensignal $q(t)$ abgeleitet wurden. Bei einem der Sendesignale wurde der sog. $\color{red} {\rm Dualcode}$ mit der Zuordnung
- $$\mathbf{LL}\hspace{0.1cm}\Leftrightarrow \hspace{0.1cm} -s_0, \hspace{0.15cm} \mathbf{LH}\hspace{0.1cm}\Leftrightarrow \hspace{0.1cm} -s_0/3,$$
- $$\mathbf{HL}\hspace{0.1cm}\Leftrightarrow \hspace{0.1cm} +s_0/3, \hspace{0.15cm} \mathbf{HH}\hspace{0.1cm}\Leftrightarrow \hspace{0.1cm} +s_0$$
verwendet, beim anderen eine bestimmte Form eines $\color{red} {\rm Graycodes}$. Dieser zeichnet sich dadurch aus, dass sich die Binärdarstellung benachbarter Amplitudenwerte immer nur in einem einzigen Bit unterscheiden.
Bei der Lösung der Aufgabe soll von folgenden Voraussetzungen ausgegangen werden:
- Die Amplitudenstufen liegen bei $±3\ \rm V$ und $±1 \ \rm V$. Die Entscheiderschwellen liegen in der Mitte zwischen zwei benachbarten Amplitudenwerten, also bei $–2\ \rm V$, $0\ \rm V$ und $+2\ \rm V$.
- Der Rauscheffektivwert ist $\sigma_{d}$. Dieser ist so zu wählen, dass die Verfälschungswahrscheinlichkeit vom äußeren Symbol $(+s_0)$ zum nächstgelegenen Symbol $(+s_{0}/3)$ genau $p = 1\%$ beträgt.
- Verfälschungen zu nicht benachbarten Symbolen können ausgeschlossen werden; bei Gaußschen Störungen ist diese Vereinfachung in der Praxis stets erlaubt.
- Man unterscheidet grundsätzlich zwischen der $\color{red} {\rm Symbolfehlerwahrscheinlichkeit} \ p_{\rm S}$ (bezogen auf das Quaternärsignal) und der $\color{red} {\rm Bitfehlerwahrscheinlichkeit} \ p_{B}$ (bezogen auf das Quellensignal).
Hinweis:
Die Aufgabe gehört zum Themengebiet von Redundanzfreie Codierung. Zur numerischen Auswertung der Q–Funktion können Sie das folgende Interaktionsmodul benutzen:
Komplementäre Gaußsche Fehlerfunktionen
Fragebogen
Musterlösung
- $$\mathbf{HH}\hspace{0.1cm}\Leftrightarrow \hspace{0.1cm} -1, \hspace{0.15cm} \mathbf{HL}\hspace{0.1cm}\Leftrightarrow \hspace{0.1cm} -1/3, \hspace{0.15cm} \mathbf{LL}\hspace{0.1cm}\Leftrightarrow \hspace{0.1cm} +1/3, \hspace{0.15cm} \mathbf{LH}\hspace{0.1cm}\Leftrightarrow \hspace{0.1cm} +1 \hspace{0.05cm}.$$
(2) Die Wahrscheinlichkeit $p$, dass der Amplitudenwert $3 \rm V$ aufgrund des gaußverteilten Rauschens mit der Streuung $\sigma_{d}$ die benachbarte Entscheiderschwelle $2 \rm V$ unterschreitet, soll $1 \%$ betragen. Daraus folgt:
- $$ p = {\rm Q} \left ( \frac{3\,{\rm V} - 2\,{\rm V}} { \sigma_d}\right ) = 1 \%\hspace{0.3cm}\Rightarrow \hspace{0.3cm} {1\,{\rm V} }/ { \sigma_d} \approx 2.33 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} { \sigma_d}\hspace{0.15cm}\underline {\approx 0.43\,{\rm V}}\hspace{0.05cm}.$$
(3) Die beiden äußeren Symbole werden jeweils mit der Wahrscheinlichkeit $p$ verfälscht, die beiden inneren mit der doppelten Wahrscheinlichkeit $(2p)$. Durch Mittelung unter Berücksichtigung gleicher Symbolauftrittswahrscheinlichkeiten erhält man
- $$p_{\rm S} = 1.5 \cdot p \hspace{0.15cm}\underline { = 1.5 \,\%} \hspace{0.05cm}.$$
(4) Jeder Symbolfehler führt genau zu einem Bitfehler. Da jedoch jedes Quaternärsymbol genau zwei Binärsymbole beinhaltet, ergibt sich für die Bitfehlerwahrscheinlichkeit:
- $$p_{\rm B} = {p_{\rm S}}/ { 2}\hspace{0.15cm}\underline { = 0.75 \,\%} \hspace{0.05cm}.$$
(5) Bei der Berechnung der Symbolfehlerwahrscheinlichkeit pS wird das verwendete Mapping nicht berücksichtigt. Wie in der Teilaufgabe c) erhält man somit $p_{\rm S} \underline{ = 1.5 \%}$.
(6) Die beiden äußeren Symbole werden mit $p$ verfälscht und führen auch beim Dualcode jeweils nur zu einem Bitfehler. Die inneren Symbole werden mit $2p$ verfälscht und führen nun im Mittel zu $1.5$ Bitfehlern. Unter Berücksichtigung des Faktors $2$ im Nenner – siehe Teilaufgabe (2) – erhält man somit für die Bitfehlerwahrscheinlichkeit des Dualcodes:
- $$p_{\rm B} = \frac{1} { 4} \cdot \frac{p + 2p \cdot 1.5 + 2p \cdot 1.5 + p} { 2} = p \hspace{0.15cm}\underline { = 1 \,\%} \hspace{0.05cm}.$$