Aufgaben:Aufgabe 4.14: AKF und KKF bei Rechtecksignalen: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
Zeile 44: Zeile 44:
  
  
{Es gelte  wieder $p = 0.25$. Berechnen Sie die Kreuzkorrelationsfunktion $\varphi_{pz}(\tau)$) für $\tau = 0$, $\tau = 3T$ und $\tau = 6T$?
+
{Es gelte  wieder $p = 0.25$. Berechnen Sie die Kreuzkorrelationsfunktion $\varphi_{pz}(\tau)$ für $\tau = 0$, $\tau = 3T$ und $\tau = 6T$?
 
|type="{}"}
 
|type="{}"}
 
$\varphi_{pz}(\tau= 0) \ = $ { -0.26--0.24 } $\ \rm V^2$
 
$\varphi_{pz}(\tau= 0) \ = $ { -0.26--0.24 } $\ \rm V^2$
Zeile 69: Zeile 69:
 
===Musterlösung===
 
===Musterlösung===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Der AKF-Wert bei <i>&tau;</i> = 0 gibt die mittlere Leistung an:
+
'''(1)'''&nbsp; Der AKF-Wert bei $\tau = 0$ gibt die mittlere Leistung an:
:$$\varphi_z ( \tau = 0) = \frac {1}{2} \cdot (1 {\rm V})^2 \hspace{0.15cm}\underline{= 0.5 {\rm V}^2}.$$
+
:$$\varphi_z ( \tau = 0) = {1}/{2} \cdot (1 {\rm V})^2 \hspace{0.15cm}\underline{= 0.5 {\rm V}^2}.$$
  
F&uuml;r <u><i>&tau;</i> = &plusmn;<i>T</i>, &plusmn;3<i>T</i>, ... ergibt sich <i>&phi;<sub>z</sub></i>(<i>&tau;</i>) = 0</u>, w&auml;hrend f&uuml;r die Zwischenwerte <i>&tau;</i> = &plusmn;2<i>T</i>, &plusmn;4<i>T</i>, ... gilt:
+
F&uuml;r $\tau = \pm T$, $\underline{\tau = \pm 3T}$, ... ergibt sich $\varphi_z ( \tau)\hspace{0.15cm}\underline{ = 0}$.  
:$$\varphi_z ( \tau = \pm 2 T) = \varphi_z ( \tau = \pm 4 T) =  \hspace{0.1cm} ... \hspace{0.1cm}= \\ = \frac {1 {\rm V}^2}{2}  \left(p \hspace{0.02cm} \cdot \hspace{0.02cm}p \hspace{0.2cm} + \hspace{0.2cm}p \hspace{0.02cm}\cdot \hspace{0.02cm}(p-1) \hspace{0.2cm}+\hspace{0.2cm} (p-1)\hspace{0.02cm} \cdot \hspace{0.02cm}p \hspace{0.2cm}+\hspace{0.2cm} (p-1)\hspace{0.02cm} \cdot \hspace{0.02cm}(p-1)\right)  \\ = 0.5\, {\rm V}^2  \left( p^2  \hspace{0.2cm} - \hspace{0.2cm}2p \hspace{0.02cm}\cdot \hspace{0.02cm}(1-p) \hspace{0.2cm}+\hspace{0.2cm} (1-p)^2 \right) = 0.5\, {\rm V}^2 \cdot (1-2p)^2 .$$
 
  
Hierbei steht <i>p</i> f&uuml;r <i>p</i> &middot; (+1) und (<i>p</i> &ndash; 1) f&uuml;r (1 &ndash; <i>p</i>) &middot; (&ndash;1), also jeweils Wahrscheinlichkeit mal normierter Amplitudenwert. <u>Für <i>p</i> = 0.25</u> ergeben sich diese Zwischenwerte zu <u>0.125 V<sup>2</sup></u>.
+
F&uuml;r die Zwischenwerte $\tau = \pm 2T$, $\tau = \pm 4T$, $\underline{\tau = \pm 6T}$, ... gilt:
 +
:$$\varphi_z ( \tau) =  \frac {1 {\rm V}^2}{2}  \left(p \hspace{0.02cm} \cdot \hspace{0.02cm}p \hspace{0.2cm} + \hspace{0.2cm}p \hspace{0.02cm}\cdot \hspace{0.02cm}(p-1) \hspace{0.2cm}+\hspace{0.2cm} (p-1)\hspace{0.02cm} \cdot \hspace{0.02cm}p \hspace{0.2cm}+\hspace{0.2cm} (p-1)\hspace{0.02cm} \cdot \hspace{0.02cm}(p-1)\right)  = \hspace{0.1cm}... \hspace{0.1cm}= 0.5\, {\rm V}^2 \cdot (1-2p)^2 .$$
  
Die nachfolgende Skizze zeigt den Verlauf von <i>&phi;<sub>z</sub></i>(<i>&tau;</i>) f&uuml;r <i>p</i> = 0.25 im Bereich von - 7<i>T</i> &#8804; <i>&tau;</i> &#8804; 7<i>T</i> als blaue Kurve. Aufgrund des rechteckf&ouml;rmigen Signalverlaufs ergeben sich eine Summe von Dreieckfunktionen. F&uuml;r <i>p</i> = 0.5 w&uuml;rden die &auml;u&szlig;eren (kleineren) Dreiecke verschwinden.
+
[[Datei:P_ID437__Sto_A_4_14_a.png|framed|right|AKF und KKF]]
[[Datei:P_ID437__Sto_A_4_14_a.png|center|]]
+
Hierbei steht $p$ f&uuml;r $p \cdot (+1)$ und $(p-1)$ f&uuml;r $(1-p) \cdot (-1)$, also jeweils Wahrscheinlichkeit mal normierter Amplitudenwert. Mit $p = 0.25$ ergeben sich diese Zwischenwerte zu $\varphi_z ( \tau = \pm 6 T) \hspace{0.15cm}\underline{=0.125 \rm V^2}$.
  
'''(2)'''&nbsp; Das Ergebnis ist in der allgemeing&uuml;ltigen Darstellung von (a) als Sonderfall f&uuml;r <i>p</i> = 1 enthalten. Man erh&auml;lt nun eine periodische AKF (siehe roter Kurvenverlauf in obiger Skizze) mit
+
Die Skizze zeigt den Verlauf von $\varphi_z(\tau)$ f&uuml;r $p = 0.25$ im Bereich von $-7T \le \tau \le +7T$ als blaue Kurve.
 +
*Aufgrund des rechteckf&ouml;rmigen Signalverlaufs ergibt sich eine Summe von Dreieckfunktionen.
 +
*F&uuml;r $p = 0.5$ w&uuml;rden die &auml;u&szlig;eren (kleineren) Dreiecke verschwinden.
 +
 
 +
 
 +
 
 +
'''(2)'''&nbsp; Die AKF $\varphi_p(\tau)$ des unipolaren periodischen Signals $p(t)$  ist in der allgemeing&uuml;ltigen Darstellung von (1) &nbsp; &rArr; &nbsp; AKF $\varphi_z(\tau)$ als Sonderfall f&uuml;r $p = 1$ enthalten. Man erh&auml;lt nun eine periodische AKF (siehe roter Kurvenverlauf in obiger Skizze) mit
 
:$$\varphi_p ( \tau = 0) = \varphi_p ( \tau = \pm 2 T) = \varphi_p ( \tau = \pm 4 T) = \hspace{0.1cm} ... \hspace{0.1cm}\hspace{0.15cm}\underline{= 0.5 {\rm V}^2},$$
 
:$$\varphi_p ( \tau = 0) = \varphi_p ( \tau = \pm 2 T) = \varphi_p ( \tau = \pm 4 T) = \hspace{0.1cm} ... \hspace{0.1cm}\hspace{0.15cm}\underline{= 0.5 {\rm V}^2},$$
 
:$$\varphi_p ( \tau = \pm T) = \varphi_p ( \tau = \pm 3T) = \hspace{0.1cm} ... \hspace{0.1cm}\hspace{0.15cm}\underline{= 0}.$$
 
:$$\varphi_p ( \tau = \pm T) = \varphi_p ( \tau = \pm 3T) = \hspace{0.1cm} ... \hspace{0.1cm}\hspace{0.15cm}\underline{= 0}.$$
  
'''(3)'''&nbsp; Auch f&uuml;r die KKF ergibt sich f&uuml;r <i>&tau;</i> = &plusmn;<i>T</i>, &plusmn;3<i>T</i>, ...  stets der Wert 0. Dagegen sind die KKF-Werte f&uuml;r <i>&tau;</i> = &plusmn;2<i>T</i>, &plusmn;4<i>T</i>, ...  identisch mit denen bei <i>&tau;</i> = 0:
 
:$$\varphi_{pz} ( \tau = 0)  = \varphi_{pz} ( \tau = \pm 2 T) = \varphi_{pz} ( \tau = \pm 4 T) = \hspace{0.1cm} ... \hspace{0.1cm}= \\ = \frac {1 {\rm V}^2}{2}  \left( p - (1-p)\right) = \frac {2p -1}{2}\,  {\rm V}^2  .$$
 
  
:Man erhält mit <i>p</i> = 0.25 folgende Ergebnisse (siehe grüne Kurve in obiger Skizze):
+
'''(3)'''&nbsp; Auch f&uuml;r die KKF ergibt sich f&uuml;r $\tau = \pm T$, $\underline{\tau = \pm 3T}$, ... , ...  stets der Wert $0$. Dagegen sind die KKF-Werte f&uuml;r $\tau = \pm 2T$,  $\tau = \pm 2T$, ...  identisch mit denen bei  $\tau = 0$:
 +
:$$\varphi_{pz} ( \tau = 0)  = \varphi_{pz} ( \tau = \pm 2 T) = \varphi_{pz} ( \tau = \pm 4 T) = \hspace{0.1cm} ... \hspace{0.1cm}=  \frac {1 {\rm V}^2}{2}  \left( p - (1-p)\right) = \frac {2p -1}{2}\,  {\rm V}^2  .$$
 +
 
 +
Man erhält mit $p = 0.25$ folgende Ergebnisse (siehe grüne Kurve in obiger Skizze):
 
:$$\varphi_{pz} ( \tau = 0)\hspace{0.15cm}\underline{= -0.25 {\rm V}^2},\hspace{0.5cm}
 
:$$\varphi_{pz} ( \tau = 0)\hspace{0.15cm}\underline{= -0.25 {\rm V}^2},\hspace{0.5cm}
 
\varphi_{pz} ( \tau = 3T)\hspace{0.15cm}\underline{= 0},\hspace{0.5cm}
 
\varphi_{pz} ( \tau = 3T)\hspace{0.15cm}\underline{= 0},\hspace{0.5cm}
 
\varphi_{pz} ( \tau = 6T)\hspace{0.15cm}\underline{= -0.25 {\rm V}^2}.$$
 
\varphi_{pz} ( \tau = 6T)\hspace{0.15cm}\underline{= -0.25 {\rm V}^2}.$$
  
:Mit <i>p</i> = 1 würde dagegen <i>z</i>(<i>t</i>) &#8801; <i>p</i>(<i>t</i>) gelten und damit nat&uuml;rlich auch <i>&phi;<sub>pz</sub></i>(<i>&tau;</i>) &#8801; <i>&phi;<sub>p</sub></i>(<i>&tau;</i>) &#8801; <i>&phi;<sub>z</sub></i>(<i>&tau;</i>). Für den Sonderfall <i>p</i> = 0.5 erg&auml;be sich keine Korrelation zwischen <i>p</i>(<i>t</i>) und <i>z</i>(<i>t</i>): <i>&phi;<sub>pz</sub></i>(<i>&tau;</i>) = 0.
+
*Mit $p = 1$ würde dagegen $z(z) \equiv p(t)$gelten und damit nat&uuml;rlich auch $\varphi_{pz}(\tau) \equiv \varphi_{p}(\tau) \equiv \varphi_{z}(\tau)$.  
 +
*Für den Sonderfall $p = 0.5$ erg&auml;be sich keine Korrelation zwischen $p(t)$ und $z(t)$ und damit $\varphi_{pz}(\tau)=0$.
  
'''(4)'''&nbsp; Durch Einsetzen von <i>c</i>(<i>t</i>) = <i>a</i>(<i>t</i>) + <i>b</i>(<i>t</i>) in die allgemeine AKF-Definition erh&auml;lt man:
+
 
:$$\varphi_c ( \tau ) = \overline{c(t)\hspace{0.02cm} \cdot \hspace{0.02cm} c(t + \tau)} = \overline{a(t)\hspace{0.02cm} \cdot \hspace{0.02cm} a(t + \tau)} \hspace{0.1cm}+\hspace{0.1cm}\overline{a(t)\hspace{0.02cm} \cdot \hspace{0.02cm} b(t + \tau)} \hspace{0.1cm}\\  + \hspace{0.1cm}\overline{b(t)\hspace{0.02cm} \cdot \hspace{0.02cm} a(t + \tau)} \hspace{0.1cm}+\hspace{0.1cm}\overline{b(t)\hspace{0.02cm} \cdot \hspace{0.02cm} b(t + \tau)}. $$
+
'''(4)'''&nbsp; Durch Einsetzen von $c(t) = a(t) + b(t)$ in die allgemeine AKF-Definition erh&auml;lt man:
 +
:$$\varphi_c ( \tau ) = \overline{c(t)\hspace{0.02cm} \cdot \hspace{0.02cm} c(t + \tau)} = \overline{a(t)\hspace{0.02cm} \cdot \hspace{0.02cm} a(t + \tau)} \hspace{0.1cm}+\hspace{0.1cm}\overline{a(t)\hspace{0.02cm} \cdot \hspace{0.02cm} b(t + \tau)} +\overline{b(t)\hspace{0.02cm} \cdot \hspace{0.02cm} a(t + \tau)} \hspace{0.1cm}+\hspace{0.1cm}\overline{b(t)\hspace{0.02cm} \cdot \hspace{0.02cm} b(t + \tau)}. $$
 
:$$\Rightarrow  \hspace{0.5cm} \varphi_c ( \tau ) = \varphi_{a} ( \tau ) \hspace{0.1cm} + \hspace{0.1cm} \varphi_{ab} ( \tau ) \hspace{0.1cm} + \hspace{0.1cm} \varphi_{ba} ( \tau ) \hspace{0.1cm} + \hspace{0.1cm}\varphi_{a} ( \tau ). $$
 
:$$\Rightarrow  \hspace{0.5cm} \varphi_c ( \tau ) = \varphi_{a} ( \tau ) \hspace{0.1cm} + \hspace{0.1cm} \varphi_{ab} ( \tau ) \hspace{0.1cm} + \hspace{0.1cm} \varphi_{ba} ( \tau ) \hspace{0.1cm} + \hspace{0.1cm}\varphi_{a} ( \tau ). $$
  
:Richtig ist der <u>L&ouml;sungsvorschlag 2</u>. Der L&ouml;sungsvorschlag 1 trifft nur zu, wenn <i>a</i>(<i>t</i>) und <i>b</i>(<i>t</i>) unkorreliert sind. Der letzte Vorschlag, die Faltungsoperation, ist immer falsch. Eine ähnliche Gleichung w&uuml;rde sich nur dann ergeben, wenn wir die WDF <i>f<sub>c</sub></i>(<i>c</i>) der Summe <i>c</i>(<i>t</i>) = <i>a</i>(<i>t</i>) + <i>b</i>(<i>t</i>) betrachten und <i>a</i>(<i>t</i>) und <i>b</i>(<i>t</i>) statistisch unabh&auml;ngig sind:
+
Richtig ist somit  der <u>L&ouml;sungsvorschlag 2</u>.  
:$$f_c (c) = f_a (a) \star f_b (b) .$$
+
*Der L&ouml;sungsvorschlag 1 trifft nur zu, wenn $a(t)$ und $b(t)unkorreliert sind.  
 +
*Der letzte Vorschlag, die Faltungsoperation, ist immer falsch. Eine ähnliche Gleichung w&uuml;rde sich nur dann ergeben, wenn wir die WDF $f_c(c)$ der Summe $c(t) = a(t) + b(t)$ betrachten und $a(t)$ und $b(t)$) statistisch unabh&auml;ngig sind: &nbsp; $f_c (c) = f_a (a) \star f_b (b) .$
  
 
'''(5)'''&nbsp; Mit dem Ergebnis von (4) und unter Ber&uuml;cksichtigung des Faktors 1/2 erh&auml;lt man:
 
'''(5)'''&nbsp; Mit dem Ergebnis von (4) und unter Ber&uuml;cksichtigung des Faktors 1/2 erh&auml;lt man:
:$$\varphi_s ( \tau ) = \frac{1}{4} \left( \varphi_{p} ( \tau ) \hspace{0.1cm} + \hspace{0.1cm} \varphi_{z} ( \tau ) \hspace{0.1cm} + \hspace{0.1cm} 2 \cdot \varphi_{pz} ( \tau )  \right) . $$
+
:$$\varphi_s ( \tau ) = {1}/{4} \cdot \left[ \varphi_{p} ( \tau ) \hspace{0.1cm} + \hspace{0.1cm} \varphi_{z} ( \tau ) \hspace{0.1cm} + \hspace{0.1cm} 2 \cdot \varphi_{pz} ( \tau )  \right] . $$
 
 
:Hierbei ist bereits ber&uuml;cksichtigt, dass die KKF zwischen <i>p</i> und <i>z</i> eine gerade Funktion ist, so dass auch <i>&phi;<sub>pz</sub></i>(<i>&tau;</i>) = <i>&phi;<sub>zp</sub></i>(<i>&tau;</i>) gilt. F&uuml;r <i>&tau;</i> = 0 erh&auml;lt man deshalb mit den obigen Ergebnissen allgemein:
 
:$$\varphi_s( \tau = 0) =  \frac {1 }{4}  \left( 0.5 {\rm V}^2 +0.5 {\rm V}^2 + 2 \cdot \frac{2p-1}{2} {\rm V}^2\right) .$$
 
  
:Mit <i>p</i> = 0.25 ergibt sich <i>&phi;<sub>zp</sub></i>(<i>&tau;</i> = 0) = 0.125 V<sup>2</sup>. Dieses Ergebnis ist plausibel. Im Mittel ist nur in jedem achten Intervall <i>s</i>(<i>t</i>) = 1 V; ansonsten ist <i>s</i>(<i>t</i>) = 0 V.
+
Hierbei ist bereits ber&uuml;cksichtigt, dass die KKF zwischen $p(t)$ und $z(t)$ eine gerade Funktion ist, so dass auch $\varphi_{pz}(\tau) = \varphi_{zp}(\tau)$ gilt. F&uuml;r $\tau = 0$ erh&auml;lt man deshalb mit den obigen Ergebnissen allgemein:
 +
:$$\varphi_s( \tau = 0) =  {1}/{4} \cdot  \left( 0.5 {\rm V}^2 +0.5 {\rm V}^2 + 2 \cdot \frac{2p-1}{2} {\rm V}^2\right) .$$
 +
Mit $p = 0.25$ ergibt sich $ \varphi_{pz} ( \tau = 0 ) = 0.125\rm V^2$. Dieses Ergebnis ist plausibel. Im Mittel ist nur in jedem achten Intervall $s(t)=1 \hspace{0.05cm} \rm V$; ansonsten ist $s(t)=0 \hspace{0.05cm} \rm V$.
  
:F&uuml;r geradzahlige Vielfache von <i>T</i> gilt:
+
F&uuml;r geradzahlige Vielfache von $T$ gilt:
:$$  \varphi_s ( \tau = \pm 2 T) = \varphi_s ( \tau = \pm 4 T) = \hspace{0.1cm} ... \hspace{0.1cm} = \\ = \frac {0.5 {\rm V}^2}{4}  \left( (1-2p)^2 +1 + 2  \cdot (2p -1)\right) = 0.5 \, {\rm V}^2  \hspace{0.02cm} \cdot \hspace{0.02cm} p^2.$$
+
:$$  \varphi_s ( \tau = \pm 2 T) = \varphi_s ( \tau = \pm 4 T) = \hspace{0.1cm} ... \hspace{0.1cm} = \frac {0.5 {\rm V}^2}{4}  \left( (1-2p)^2 +1 + 2  \cdot (2p -1)\right) = 0.5 \, {\rm V}^2  \hspace{0.02cm} \cdot \hspace{0.02cm} p^2.$$
  
:Mit <i>p</i> = 0.25 erh&auml;lt man hierf&uuml;r den Wert 0.03125 V<sup>2</sup>. Alle AKF-Werte bei ungeradzahligen Vielfachen von <i>T</i> sind wieder 0. Damit ergibt sich folgende AKF:
+
Mit $p = 0.5$ erh&auml;lt man hierf&uuml;r den Wert $0.03125 \hspace{0.1cm}V^2$. Alle AKF-Werte bei ungeradzahligen Vielfachen von $T$ sind wieder $0$. Damit ergibt sich der skizzierte AKF-Verlauf. Die gesuchten Zahlenwerte sind somit:
[[Datei:P_ID441__Sto_A_4_14_e.png|center|]]
+
[[Datei:P_ID441__Sto_A_4_14_e.png|framed|right|AKF eines unipolaren Rechtecksignals]]
  
:Die gesuchten Zahlenwerte sind somit:
+
:$$\varphi_{s} ( \tau = 0)\hspace{0.15cm}\underline{= 0.125 {\rm V}^2},$$
:$$\varphi_{s} ( \tau = 0)\hspace{0.15cm}\underline{= 0.125 {\rm V}^2},\hspace{0.5cm}
+
:$$\varphi_{s} ( \tau = 3T)\hspace{0.15cm}\underline{= 0},$$
\varphi_{s} ( \tau = 3T)\hspace{0.15cm}\underline{= 0},\hspace{0.5cm}
+
:$$\varphi_{s} ( \tau = 6T)\hspace{0.15cm}\underline{= -0.03125 {\rm V}^2}.$$
\varphi_{s} ( \tau = 6T)\hspace{0.15cm}\underline{= -0.03125 {\rm V}^2}.$$
 
  
:Ein Vergleich mit der Skizze zur Aufgabe (a) zeigt, dass das bin&auml;re Signal <i>s</i>(<i>t</i>) bis auf den Faktor 1/4 die gleiche AKF aufweist wie das Tern&auml;rsignal <i>z</i>(<i>t</i>).
+
Ein Vergleich mit der Skizze zur Teilaufgabe (1) zeigt, dass das bin&auml;re Signal $s(t)$ bis auf den Faktor $1/4$ die gleiche AKF aufweist wie das Tern&auml;rsignal $z(t)$.
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
 
[[Category:Aufgaben zu Stochastische Signaltheorie|^4.6 KKF und Kreuzleistungsdichte^]]
 
[[Category:Aufgaben zu Stochastische Signaltheorie|^4.6 KKF und Kreuzleistungsdichte^]]

Version vom 30. März 2017, 11:47 Uhr

AKF und KKF bei Rechtecken

Wir betrachten ein periodisches Rechtecksignal $p(t)$ entsprechend der oberen Skizze mit den beiden möglichen Amplitudenwerten $0 \hspace{0.05cm} \rm V$ und $1 \hspace{0.05cm} \rm V$ und der Rechteckdauer $T$. Die Periodendauer beträgt somit $T_0 = 2T$.

Darunter ist das Zufallssignal $z(t)$ gezeichnet.

  • Dieses ist zwischen $(2i-1)T$ und $2i T$ mit $i=$ ... , $-1, 0, +1$, ... (im Bild rot hervorgehoben) jeweils $z(t)=0 \hspace{0.05cm} \rm V$.
  • Dagegen ist in den blau gezeichneten Intervallen zwischen $(2i+1) \cdot T$ der Signalwert zweipunktverteilt $\pm 1 \hspace{0.05cm} \rm V$.

Die Wahrscheinlichkeit, dass in den blau dargestellten Intervallen $z(t)=+1 \hspace{0.05cm} \rm V$ gilt, sei allgemein gleich $p$ und unabhängig von den vorher ausgewürfelten Werten.

Das unterste Signal in nebenstehender Grafik kann aus den beiden ersten konstruiert werden. Es gilt:

$$s(t) = {1}/{2} \cdot [p(t) + z(t)].$$

In den rot eingezeichneten Zeitintervallen zwischen $(2i-1)T$ und $2i T$ ($i$ ganzzahlig) gilt $s(t)=0 \hspace{0.05cm} \rm V$, da hier sowohl $p(t)$ als auch $z(t)$ gleich $0$ sind. In den dazwischen liegenden Intervallen ist der Amplitudenwert zweipunktverteilt zwischen $0 \hspace{0.05cm} \rm V$ und $1 \hspace{0.05cm} \rm V$, wobei der Wert $1 \hspace{0.05cm} \rm V$ wieder mit der Wahrscheinlichkeit $p$ auftritt.

Oder anders ausgedrückt: Die Signale $z(t)$ und $s(t)$ sind äquivalente Mustersignale des identischen Zufallsprozesses mit bipolarer $(-1 \hspace{0.05cm} \rm V, +1 \hspace{0.05cm} \rm V)$ bzw. unipolarer $(0 \hspace{0.05cm} \rm V, 1 \hspace{0.05cm} \rm V)$ Signaldarstellung.


Hinweise:


Fragebogen

1

Berechnen Sie die AKF $\varphi_z(\tau)$ und skizzieren Sie diese für $p = 0.25$. Welche Werte ergeben sich für $\tau = 0$, $\tau = 3T$ und $\tau = 6T$?

$\varphi_z(\tau= 0) \ = $

$\ \rm V^2$
$\varphi_z(\tau= 3T) \ = $

$\ \rm V^2$
$\varphi_z(\tau= 6T) \ = $

$\ \rm V^2$

2

Berechnen Sie nun unter Zuhilfenahme des Ergebnisses aus (1) die AKF $\varphi_p(\tau)$. Welche Werte ergeben sich für $\tau = 0$, $\tau = 3T$ und $\tau = 6T$?

$\varphi_p(\tau= 0) \ = $

$\ \rm V^2$
$\varphi_p(\tau= 3T) \ = $

$\ \rm V^2$
$\varphi_p(\tau= 6T) \ = $

$\ \rm V^2$

3

Es gelte wieder $p = 0.25$. Berechnen Sie die Kreuzkorrelationsfunktion $\varphi_{pz}(\tau)$ für $\tau = 0$, $\tau = 3T$ und $\tau = 6T$?

$\varphi_{pz}(\tau= 0) \ = $

$\ \rm V^2$
$\varphi_{pz}(\tau= 3T) \ = $

$\ \rm V^2$
$\varphi_{pz}(\tau= 6T) \ = $

$\ \rm V^2$

4

Welche AKF $\varphi_c(\tau)$ ergibt sich allgemein für die Summe $c(t) = a(t) + b(t)$?

$\varphi_c(\tau) = \varphi_a(\tau) + \varphi_b(\tau)$.
$\varphi_c(\tau) = \varphi_a(\tau) + \varphi_{ab}(\tau) + \varphi_{ba}(\tau) + \varphi_b(\tau)$).
$\varphi_c(\tau) = \varphi_a(\tau) \star \varphi_b(\tau)$.

5

Berechnen Sie unter Berücksichtigung des Ergebnisses von (4) die AKF $\varphi_s(\tau)$. Welche Werte ergeben sich mit $p = 0.25$ für $\tau = 0$, $\tau = 3T$ und $\tau = 6T$?

$\varphi_s(\tau= 0) \ = $

$\ \rm V^2$
$\varphi_s(\tau= 3T) \ = $

$\ \rm V^2$
$\varphi_s(\tau= 6T) \ = $

$\ \rm V^2$


Musterlösung

(1)  Der AKF-Wert bei $\tau = 0$ gibt die mittlere Leistung an:

$$\varphi_z ( \tau = 0) = {1}/{2} \cdot (1 {\rm V})^2 \hspace{0.15cm}\underline{= 0.5 {\rm V}^2}.$$

Für $\tau = \pm T$, $\underline{\tau = \pm 3T}$, ... ergibt sich $\varphi_z ( \tau)\hspace{0.15cm}\underline{ = 0}$.

Für die Zwischenwerte $\tau = \pm 2T$, $\tau = \pm 4T$, $\underline{\tau = \pm 6T}$, ... gilt:

$$\varphi_z ( \tau) = \frac {1 {\rm V}^2}{2} \left(p \hspace{0.02cm} \cdot \hspace{0.02cm}p \hspace{0.2cm} + \hspace{0.2cm}p \hspace{0.02cm}\cdot \hspace{0.02cm}(p-1) \hspace{0.2cm}+\hspace{0.2cm} (p-1)\hspace{0.02cm} \cdot \hspace{0.02cm}p \hspace{0.2cm}+\hspace{0.2cm} (p-1)\hspace{0.02cm} \cdot \hspace{0.02cm}(p-1)\right) = \hspace{0.1cm}... \hspace{0.1cm}= 0.5\, {\rm V}^2 \cdot (1-2p)^2 .$$
AKF und KKF

Hierbei steht $p$ für $p \cdot (+1)$ und $(p-1)$ für $(1-p) \cdot (-1)$, also jeweils Wahrscheinlichkeit mal normierter Amplitudenwert. Mit $p = 0.25$ ergeben sich diese Zwischenwerte zu $\varphi_z ( \tau = \pm 6 T) \hspace{0.15cm}\underline{=0.125 \rm V^2}$.

Die Skizze zeigt den Verlauf von $\varphi_z(\tau)$ für $p = 0.25$ im Bereich von $-7T \le \tau \le +7T$ als blaue Kurve.

  • Aufgrund des rechteckförmigen Signalverlaufs ergibt sich eine Summe von Dreieckfunktionen.
  • Für $p = 0.5$ würden die äußeren (kleineren) Dreiecke verschwinden.


(2)  Die AKF $\varphi_p(\tau)$ des unipolaren periodischen Signals $p(t)$ ist in der allgemeingültigen Darstellung von (1)   ⇒   AKF $\varphi_z(\tau)$ als Sonderfall für $p = 1$ enthalten. Man erhält nun eine periodische AKF (siehe roter Kurvenverlauf in obiger Skizze) mit

$$\varphi_p ( \tau = 0) = \varphi_p ( \tau = \pm 2 T) = \varphi_p ( \tau = \pm 4 T) = \hspace{0.1cm} ... \hspace{0.1cm}\hspace{0.15cm}\underline{= 0.5 {\rm V}^2},$$
$$\varphi_p ( \tau = \pm T) = \varphi_p ( \tau = \pm 3T) = \hspace{0.1cm} ... \hspace{0.1cm}\hspace{0.15cm}\underline{= 0}.$$


(3)  Auch für die KKF ergibt sich für $\tau = \pm T$, $\underline{\tau = \pm 3T}$, ... , ... stets der Wert $0$. Dagegen sind die KKF-Werte für $\tau = \pm 2T$, $\tau = \pm 2T$, ... identisch mit denen bei $\tau = 0$:

$$\varphi_{pz} ( \tau = 0) = \varphi_{pz} ( \tau = \pm 2 T) = \varphi_{pz} ( \tau = \pm 4 T) = \hspace{0.1cm} ... \hspace{0.1cm}= \frac {1 {\rm V}^2}{2} \left( p - (1-p)\right) = \frac {2p -1}{2}\, {\rm V}^2 .$$

Man erhält mit $p = 0.25$ folgende Ergebnisse (siehe grüne Kurve in obiger Skizze):

$$\varphi_{pz} ( \tau = 0)\hspace{0.15cm}\underline{= -0.25 {\rm V}^2},\hspace{0.5cm} \varphi_{pz} ( \tau = 3T)\hspace{0.15cm}\underline{= 0},\hspace{0.5cm} \varphi_{pz} ( \tau = 6T)\hspace{0.15cm}\underline{= -0.25 {\rm V}^2}.$$
  • Mit $p = 1$ würde dagegen $z(z) \equiv p(t)$gelten und damit natürlich auch $\varphi_{pz}(\tau) \equiv \varphi_{p}(\tau) \equiv \varphi_{z}(\tau)$.
  • Für den Sonderfall $p = 0.5$ ergäbe sich keine Korrelation zwischen $p(t)$ und $z(t)$ und damit $\varphi_{pz}(\tau)=0$.


(4)  Durch Einsetzen von $c(t) = a(t) + b(t)$ in die allgemeine AKF-Definition erhält man:

$$\varphi_c ( \tau ) = \overline{c(t)\hspace{0.02cm} \cdot \hspace{0.02cm} c(t + \tau)} = \overline{a(t)\hspace{0.02cm} \cdot \hspace{0.02cm} a(t + \tau)} \hspace{0.1cm}+\hspace{0.1cm}\overline{a(t)\hspace{0.02cm} \cdot \hspace{0.02cm} b(t + \tau)} +\overline{b(t)\hspace{0.02cm} \cdot \hspace{0.02cm} a(t + \tau)} \hspace{0.1cm}+\hspace{0.1cm}\overline{b(t)\hspace{0.02cm} \cdot \hspace{0.02cm} b(t + \tau)}. $$
$$\Rightarrow \hspace{0.5cm} \varphi_c ( \tau ) = \varphi_{a} ( \tau ) \hspace{0.1cm} + \hspace{0.1cm} \varphi_{ab} ( \tau ) \hspace{0.1cm} + \hspace{0.1cm} \varphi_{ba} ( \tau ) \hspace{0.1cm} + \hspace{0.1cm}\varphi_{a} ( \tau ). $$

Richtig ist somit der Lösungsvorschlag 2.

  • Der Lösungsvorschlag 1 trifft nur zu, wenn $a(t)$ und $b(t)$ unkorreliert sind.
  • Der letzte Vorschlag, die Faltungsoperation, ist immer falsch. Eine ähnliche Gleichung würde sich nur dann ergeben, wenn wir die WDF $f_c(c)$ der Summe $c(t) = a(t) + b(t)$ betrachten und $a(t)$ und $b(t)$) statistisch unabhängig sind:   $f_c (c) = f_a (a) \star f_b (b) .$

(5)  Mit dem Ergebnis von (4) und unter Berücksichtigung des Faktors 1/2 erhält man:

$$\varphi_s ( \tau ) = {1}/{4} \cdot \left[ \varphi_{p} ( \tau ) \hspace{0.1cm} + \hspace{0.1cm} \varphi_{z} ( \tau ) \hspace{0.1cm} + \hspace{0.1cm} 2 \cdot \varphi_{pz} ( \tau ) \right] . $$

Hierbei ist bereits berücksichtigt, dass die KKF zwischen $p(t)$ und $z(t)$ eine gerade Funktion ist, so dass auch $\varphi_{pz}(\tau) = \varphi_{zp}(\tau)$ gilt. Für $\tau = 0$ erhält man deshalb mit den obigen Ergebnissen allgemein:

$$\varphi_s( \tau = 0) = {1}/{4} \cdot \left( 0.5 {\rm V}^2 +0.5 {\rm V}^2 + 2 \cdot \frac{2p-1}{2} {\rm V}^2\right) .$$

Mit $p = 0.25$ ergibt sich $ \varphi_{pz} ( \tau = 0 ) = 0.125\rm V^2$. Dieses Ergebnis ist plausibel. Im Mittel ist nur in jedem achten Intervall $s(t)=1 \hspace{0.05cm} \rm V$; ansonsten ist $s(t)=0 \hspace{0.05cm} \rm V$.

Für geradzahlige Vielfache von $T$ gilt:

$$ \varphi_s ( \tau = \pm 2 T) = \varphi_s ( \tau = \pm 4 T) = \hspace{0.1cm} ... \hspace{0.1cm} = \frac {0.5 {\rm V}^2}{4} \left( (1-2p)^2 +1 + 2 \cdot (2p -1)\right) = 0.5 \, {\rm V}^2 \hspace{0.02cm} \cdot \hspace{0.02cm} p^2.$$

Mit $p = 0.5$ erhält man hierfür den Wert $0.03125 \hspace{0.1cm}V^2$. Alle AKF-Werte bei ungeradzahligen Vielfachen von $T$ sind wieder $0$. Damit ergibt sich der skizzierte AKF-Verlauf. Die gesuchten Zahlenwerte sind somit:

AKF eines unipolaren Rechtecksignals
$$\varphi_{s} ( \tau = 0)\hspace{0.15cm}\underline{= 0.125 {\rm V}^2},$$
$$\varphi_{s} ( \tau = 3T)\hspace{0.15cm}\underline{= 0},$$
$$\varphi_{s} ( \tau = 6T)\hspace{0.15cm}\underline{= -0.03125 {\rm V}^2}.$$

Ein Vergleich mit der Skizze zur Teilaufgabe (1) zeigt, dass das binäre Signal $s(t)$ bis auf den Faktor $1/4$ die gleiche AKF aufweist wie das Ternärsignal $z(t)$.