Aufgaben:Aufgabe 3.6Z: Komplexe Exponentialfunktion: Unterschied zwischen den Versionen
Zeile 4: | Zeile 4: | ||
[[Datei:P_ID518__Sig_Z_3_6_neu.png|right|Komplexe Exponentialfunktion]] | [[Datei:P_ID518__Sig_Z_3_6_neu.png|right|Komplexe Exponentialfunktion]] | ||
− | In Zusammenhang mit Bandpass-Systemen | + | In Zusammenhang mit den [[Signaldarstellung/Unterschiede_und_Gemeinsamkeiten_von_TP-_und_BP-Signalen|Bandpass-Systemen]] wird oft mit einseitigen Spektren gearbeitet. In der Abbildung sehen Sie eine solche einseitige Spektralfunktion $\text{X(f)}$, die ein komplexes Zeitsignal $\text{x(t)}$ zur Folge hat. |
− | In der unteren Skizze ist $ | + | In der unteren Skizze ist ${X(f)}$ in einen – bezüglich der Frequenz – geraden Anteil ${G(f)}$ sowie einen ungeraden Anteil ${U(f)}$ aufgespaltet. |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
''Hinweise:'' | ''Hinweise:'' | ||
*Die Aufgabe gehört zum Kapitel [[Signaldarstellung/Gesetzmäßigkeiten_der_Fouriertransformation|Gesetzmäßigkeiten der Fouriertransformation]]. | *Die Aufgabe gehört zum Kapitel [[Signaldarstellung/Gesetzmäßigkeiten_der_Fouriertransformation|Gesetzmäßigkeiten der Fouriertransformation]]. | ||
*Alle dort dargelegten Gesetzmäßigkeiten werden im Lernvideo [[Gesetzmäßigkeiten der Fouriertransformation (Dauer Teil 1: 5:57 – Teil 2: 5:55)]] an Beispielen verdeutlicht. | *Alle dort dargelegten Gesetzmäßigkeiten werden im Lernvideo [[Gesetzmäßigkeiten der Fouriertransformation (Dauer Teil 1: 5:57 – Teil 2: 5:55)]] an Beispielen verdeutlicht. | ||
− | *Lösen Sie diese Aufgabe mit Hilfe des [[Signaldarstellung/Gesetzmäßigkeiten_der_Fouriertransformation#Zuordnungssatz|Zuordnungssatzes]]. | + | *Lösen Sie diese Aufgabe mit Hilfe des [[Signaldarstellung/Gesetzmäßigkeiten_der_Fouriertransformation#Zuordnungssatz|Zuordnungssatzes]] und dem [[Signaldarstellung/Gesetzmäßigkeiten_der_Fouriertransformation#Verschiebungssatz|Verschiebungssatz]]. |
− | *Verwenden Sie für die beiden ersten Teilaufgaben die Signalparameter $ | + | *Verwenden Sie für die beiden ersten Teilaufgaben die Signalparameter $A = 1\, \text{V}$ und $f_0 = 125 \,\text{kHz}.$ |
*Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein. | *Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein. | ||
− | |||
− | |||
− | |||
− | |||
Version vom 18. Januar 2017, 10:38 Uhr
In Zusammenhang mit den Bandpass-Systemen wird oft mit einseitigen Spektren gearbeitet. In der Abbildung sehen Sie eine solche einseitige Spektralfunktion $\text{X(f)}$, die ein komplexes Zeitsignal $\text{x(t)}$ zur Folge hat.
In der unteren Skizze ist ${X(f)}$ in einen – bezüglich der Frequenz – geraden Anteil ${G(f)}$ sowie einen ungeraden Anteil ${U(f)}$ aufgespaltet.
Hinweise:
- Die Aufgabe gehört zum Kapitel Gesetzmäßigkeiten der Fouriertransformation.
- Alle dort dargelegten Gesetzmäßigkeiten werden im Lernvideo Gesetzmäßigkeiten der Fouriertransformation (Dauer Teil 1: 5:57 – Teil 2: 5:55) an Beispielen verdeutlicht.
- Lösen Sie diese Aufgabe mit Hilfe des Zuordnungssatzes und dem Verschiebungssatz.
- Verwenden Sie für die beiden ersten Teilaufgaben die Signalparameter $A = 1\, \text{V}$ und $f_0 = 125 \,\text{kHz}.$
- Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
Fragebogen
Musterlösung
- $$g( t ) = A \cdot \cos ( {2{\rm{\pi }}f_0 t} ).$$
Bei $t = 1 \text{$\mu$s}$ ist der Signalwert gleich $A \cdot cos(\pi /4)$, also $0.707 \text{V}$ (Realteil) und $0$ (Imaginärteil).
2. Ausgehend von der Fourierkorrespondenz
- $$A \cdot {\rm \delta} ( f )\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, A$$
erhält man durch zweimalige Anwendung des Verschiebungssatzes (im Frequenzbereich):
- $$U( f ) = \frac{A}{2} \cdot \delta ( {f - f_0 } ) - \frac{A}{2} \cdot \delta ( {f + f_0 } )\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, u( t ) = \frac{A}{2}\left( {{\rm{e}}^{{\rm{j}}2{\rm{\pi }}f_0 t} - {\rm{e}}^{{\rm{ - j}}2{\rm{\pi }}f_0 t} } \right).$$
Nach dem Satz von Euler kann hierfür auch geschrieben werden:
- $$u( t ) = {\rm{j}} \cdot A \cdot \sin ( {2{\rm{\pi }}f_0 t} ).$$
Der Realteil dieses Signals ist stets $0$. Der Imaginärteil hat zur Zeit $t = 1 \text{$\mu$s}$ den Wert $0.707 \text{V}$.
3. Wegen $\text{X(f)} = \text{G(f)} + \text{U(f)}$ gilt auch:
- $$x(t) = g(t) + u(t) = A \cdot \cos ( {2{\rm{\pi }}f_0 t} ) + {\rm{j}} \cdot A \cdot \sin( {2{\rm{\pi }}f_0 t} ).$$
Dieses Ergebnis kann mit dem Satz von Euler wie folgt zusammengefasst werden:
- $$x(t) = A \cdot {\rm{e}}^{{\rm{j}}2{\rm{\pi }}f_0 t} .$$
Das Signal dreht in der komplexen Ebene in mathematisch positiver Richtung, also entgegen dem Uhrzeigersinn. Für eine Umdrehung benötigt der „Zeiger” die Periodendauer $T_0 = 1/f_0 = 8 \text{$\mu$s}$. Richtig sind also die vorgegebenen Alternativen 1 und 3.