Aufgaben:Aufgabe 2.2Z: Diskrete Zufallsgrößen: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
 
(11 dazwischenliegende Versionen von 3 Benutzern werden nicht angezeigt)
Zeile 3: Zeile 3:
 
}}
 
}}
  
[[Datei:P_ID84__Sto_Z_2_2.png|right|]]
+
[[Datei:P_ID84__Sto_Z_2_2.png|right|frame|Verschiedene  Rechtecksignale]]
:Gegeben seien drei diskrete Zufallsgr&ouml;&szlig;en <i>a</i>, <i>b</i> und <i>c</i>, die als die Momentanwerte der dargestellten Signale definiert seien. Diese besitzen folgende Eigenschaften:
+
Gegeben seien drei diskrete Zufallsgr&ouml;&szlig;en&nbsp; $a$,&nbsp; $b$&nbsp; und&nbsp; $c$,&nbsp; die als die Momentanwerte der dargestellten Signale definiert seien.&nbsp; Diese besitzen folgende Eigenschaften:
  
:Die Zufallsgr&ouml;&szlig;e $a$ kann die Werte +1 und -1 mit gleicher Wahrscheinlichkeit annehmen.
+
*Die Zufallsgr&ouml;&szlig;e&nbsp; $a$&nbsp; kann die Werte&nbsp; $+1$&nbsp; und&nbsp; $-1$&nbsp; mit gleicher Wahrscheinlichkeit annehmen.
 +
*Auch die Zufallsgr&ouml;&szlig;e&nbsp; $b$&nbsp; ist zweipunktverteilt, aber  mit&nbsp; ${\rm Pr}(b = 1) = p$ &nbsp;und&nbsp; ${\rm Pr}(b = 0) = 1 - p$.
 +
*Die Wahrscheinlichkeiten von&nbsp; $c$&nbsp; seien&nbsp; ${\rm Pr}(c = 0) = 1/2$ &nbsp;und&nbsp; ${\rm Pr}(c = +1) = Pr(c = -1) =1/4$.
 +
*Zwischen den drei Zufallsgr&ouml;&szlig;en&nbsp; $a$,&nbsp; $b$&nbsp; und&nbsp; $c$&nbsp; bestehen keine statistischen Abhängigkeiten.
 +
*Aus den Zufallsgr&ouml;&szlig;en&nbsp; $a$,&nbsp; $b$&nbsp; und&nbsp; $c$&nbsp; wird eine weitere Zufallsvariable&nbsp; $d=a-2 b+c$&nbsp;  gebildet.  
  
:Auch die Zufallsgr&ouml;&szlig;e $b$ ist zweipunktverteilt, aber  mit $Pr(b = 1) = p$ und $Pr(b = 0) = 1 - p$.
 
  
:Die Wahrscheinlichkeiten der Gr&ouml;&szlig;e $c$ seien $Pr(c = 0) = 1/2$, $Pr(c = +1) = Pr(c = -1) =1/4$.
+
Die Grafik zeigt Signalsusschnitte.&nbsp; Man erkennt,&nbsp; dass&nbsp; $d$&nbsp; alle ganzzahligen Werte zwischen&nbsp; $-4$&nbsp; und&nbsp; $+2$&nbsp; annehmen kann.
  
:Zwischen diesen drei Zufallsgr&ouml;&szlig;en bestehen keine statistischen Abhängigkeiten.
 
  
:Aus den Zufallsgr&ouml;&szlig;en $a$, $b$ und $c$ wird eine weitere Zufallsvariable $d$  gebildet:
 
:$$d=a-\rm 2\it b+c.$$
 
  
:Die Grafik zeigt Ausschnitte dieser vier Zufallsgr&ouml;&szlig;en. Es ist zu erkennen, dass $d$ alle ganzzahligen Werte zwischen -4 und +2 annehmen kann.
 
  
:<br><br><br><b>Hinweis</b>: Die Aufgabe bezieht sich auf Kapitel 2.2. Eine Zusammenfassung bietet das folgende Lernvideo:<br>
+
 
 +
 
 +
 
 +
 
 +
 
 +
''Hinweise:''
 +
*Die Aufgabe gehört zum  Kapitel&nbsp; [[Stochastische_Signaltheorie/Momente_einer_diskreten_Zufallsgröße|Momente einer diskreten Zufallsgröße]].
 +
 +
*Eine Zusammenfassung der Theamatik bietet das Lernvideo&nbsp; [[Momentenberechnung_bei_diskreten_Zufallsgrößen_(Lernvideo)|Momentenberechnung bei diskreten Zufallsgrößen]].
 +
 
  
  
Zeile 25: Zeile 33:
  
 
<quiz display=simple>
 
<quiz display=simple>
{Wie gro&szlig; ist die Streuung der Zufallsgr&ouml;&szlig;e <i>a</i>?
+
{Wie gro&szlig; ist die Streuung &nbsp;(Standardabweichung)&nbsp; der Zufallsgr&ouml;&szlig;e&nbsp; $a$?
 
|type="{}"}
 
|type="{}"}
$\sigma_a$ = { 1 3% }
+
$\sigma_a \ = \ $ { 1 3% }
  
  
{Wie gro&szlig; ist die Streuung der Zufallsgr&ouml;&szlig;e <i>b</i>? Setzen Sie <i>p</i> = 0.25.
+
{Wie gro&szlig; ist die Streuung der Zufallsgr&ouml;&szlig;e&nbsp; $b$?&nbsp; Setzen Sie&nbsp; $p = 0.25$.
 
|type="{}"}
 
|type="{}"}
$p\ =\ 0.25:\ \ \sigma_b$ = { 0.433 3% }
+
$\sigma_b \ = \ $ { 0.433 3% }
  
  
{Wie gro&szlig; ist die Streuung der Zufallsgr&ouml;&szlig;e <i>c</i>?
+
{Wie gro&szlig; ist die Streuung der Zufallsgr&ouml;&szlig;e&nbsp; $c$?
 
|type="{}"}
 
|type="{}"}
$\sigma_c$ = { 0.707 3% }
+
$\sigma_c \ = \ $ { 0.707 3% }
  
  
{Berechnen Sie den Mittelwert <i>m<sub>d</sub></i> der Zufallsgr&ouml;&szlig;e  f&uuml;r <i>p</i> = 0.25.
+
{Berechnen Sie den Mittelwert&nbsp; $m_d$&nbsp; der Zufallsgr&ouml;&szlig;e&nbsp; $d$&nbsp; f&uuml;r $p = 0.25$.
 
|type="{}"}
 
|type="{}"}
$p\ =\ 0.25:\ \ \ m_d$ = - { 0.5 3% }
+
$m_d\ = \ $ { -0.515--0.485 }
  
  
{Wie groß ist der quadratische Mittelwert <i>m</i><sub>2<i>d</i></sub> dieser Zufallsgr&ouml;&szlig;e.
+
{Wie groß ist der quadratische Mittelwert&nbsp; $m_{2d}$&nbsp; dieser Zufallsgr&ouml;&szlig;e?
 
|type="{}"}
 
|type="{}"}
$p\ =\ 0.25:\ \ \ m_\text{2d}$ = { 2.5 3% }
+
$m_{2d}\ = \ $ { 2.5 3% }
  
  
{Wie gro&szlig; ist die Streuung <i>&sigma;<sub>d</sub></i>?
+
{Wie gro&szlig; ist die Streuung&nbsp; $\sigma_d$?
 
|type="{}"}
 
|type="{}"}
$p\ =\ 0.25:\ \ \ \sigma_d$ = { 1.5 3% }
+
$\sigma_d\ = \ $ { 1.5 3% }
  
  
Zeile 59: Zeile 67:
 
===Musterlösung===
 
===Musterlösung===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
:<b>1.</b>&nbsp;&nbsp;Aufgrund der Symmetrie gilt:
+
'''(1)'''&nbsp; Aufgrund der Symmetrie gilt:
 
:$$\rm \it m_{\it a}=\rm 0; \hspace{0.5cm}\it m_{\rm 2\it a}=\rm 0.5\cdot (-1)^2 + 0.5\cdot (1)^2{ = 1}.$$
 
:$$\rm \it m_{\it a}=\rm 0; \hspace{0.5cm}\it m_{\rm 2\it a}=\rm 0.5\cdot (-1)^2 + 0.5\cdot (1)^2{ = 1}.$$
  
:Daraus erh&auml;lt man mit dem Satz von Steiner:
+
*Daraus erh&auml;lt man mit dem Satz von Steiner:
 
:$$\it\sigma_a^{\rm 2} = \rm\sqrt{1-0^2}=1 \hspace{0.5cm}bzw. \hspace{0.5cm}\it\sigma_a\hspace{0.15cm} \underline{=\rm 1}.$$
 
:$$\it\sigma_a^{\rm 2} = \rm\sqrt{1-0^2}=1 \hspace{0.5cm}bzw. \hspace{0.5cm}\it\sigma_a\hspace{0.15cm} \underline{=\rm 1}.$$
  
:<b>2.</b>&nbsp;&nbsp;Allgemein gilt f&uuml;r das Moment <i>k</i>-ter Ordnung:
 
:$$ \it m_{\it k}=(\rm 1-\it p)\rm \cdot 0^{\it k} + \it p\cdot \rm 1^{\it k}=\it p.$$
 
  
:Daraus folgt mit <i>p</i> = 1/4:
 
:$$\it m_{\it b}= \it m_{\rm 2\it b}= \it p, \hspace{0.5cm} \it \sigma_{\it b}=\sqrt{\it p\cdot (\rm 1- p)}\hspace{0.15cm} \underline{=\rm 0.433} .$$
 
  
:<b>3.</b>&nbsp;&nbsp;F&uuml;r die Zufallsgr&ouml;&szlig;e <i>c</i> gilt:
+
'''(2)'''&nbsp; Allgemein gilt f&uuml;r das Moment&nbsp; $k$&ndash;ter Ordnung:
:$$\rm \it m_{\it c} =  \rm 0\hspace{0.1cm} (symmetrisch\hspace{0.1cm}um\hspace{0.1cm}0), \hspace{0.5cm}\it m_{\rm 2\it c}= \rm \frac{1}{4}\cdot(-1)^2+\frac{1}{2}\cdot 0^2+\frac{1}{4}\cdot (1)^2=\frac{1}{2}.$$
+
:$$ m_{k}=(1-p)\cdot 0^{ k} + p\cdot 1^{k}= p.$$
:$$ \Rightarrow \hspace{0.5cm}\sigma_{\it c}=\rm \sqrt{1/2}\hspace{0.15cm} \underline{=0.707}.$$
+
 
 +
*Daraus folgt mit&nbsp; $p = 1/4$:
 +
:$$m_{b}= m_{2b}= p, \hspace{0.5cm} \sigma_{\it b}=\sqrt{p\cdot (1- p)}\hspace{0.15cm} \underline{=\rm 0.433} .$$
 +
 
 +
 
 +
 
 +
'''(3)'''&nbsp; F&uuml;r die Zufallsgr&ouml;&szlig;e&nbsp; $c$&nbsp; gilt:
 +
:$$m_{\it c} =  0\hspace{0.3cm} ({\rm symmetrisch\hspace{0.1cm}um\hspace{0.1cm}0)},$$
 +
:$$ m_{2\it c}= {1}/{4}\cdot(-1)^2+{1}/{2}\cdot 0^2+{1}/{4}\cdot (1)^2={1}/{2} \hspace{0.5cm}$$
 +
:$$\Rightarrow \hspace{0.5cm}\sigma_{\it c}=\rm \sqrt{1/2}\hspace{0.15cm} \underline{=0.707}.$$
 +
 
 +
 
 +
 
 +
'''(4)'''&nbsp; Nach den allgemeinen Regeln f&uuml;r Erwartungswerte gilt mit&nbsp; $p = 0.25$:
 +
:$$m_{\it d} = {\rm E}\big[a-2 b+c\big]= {\rm E}\big[a\big] \hspace{0.1cm} -\hspace{0.1cm}\rm 2 \hspace{0.05cm}\cdot\hspace{0.05cm} {\rm E}\big[ b\big]\hspace{0.1cm}+\hspace{0.1cm} {\rm E}\big[ c\big] =  m_{ a}\hspace{0.1cm}-\hspace{0.1cm}2\hspace{0.05cm}\cdot\hspace{0.05cm} m_{\it b}\hspace{0.1cm}+\hspace{0.1cm} m_{\it c} =    0-2\hspace{0.05cm}\cdot\hspace{0.05cm} p + 0 \hspace{0.15cm} \underline{= -0.5}.$$
 +
 
 +
 
 +
 
 +
'''(5)'''&nbsp; Analog zur Teilaufgabe&nbsp; '''(4)'''&nbsp; erh&auml;lt man für den quadratischen Mittelwert:
 +
:$$m_{2d}= {\rm E}\big[( a-2b+c)^{\rm 2}\big] =  {\rm E}\big[a^{\rm 2}\big]\hspace{0.1cm}+\hspace{0.1cm}4\hspace{0.05cm}\cdot\hspace{0.05cm} {\rm E}\big[ b^{\rm 2}\big]\hspace{0.1cm}+\hspace{0.1cm} {\rm E}\big[c^{\rm 2}\big]\hspace{0.1cm}  -  \hspace{0.1cm}4\hspace{0.05cm}\cdot\hspace{0.05cm} {\rm E}\big[a\hspace{0.05cm}\cdot \hspace{0.05cm}b\big]\hspace{0.1cm}+\hspace{0.1cm} 2\hspace{0.05cm}\cdot\hspace{0.05cm}{\rm E}\big[ a\hspace{0.05cm}\cdot \hspace{0.05cm}c\big]\hspace{0.1cm}-\hspace{0.1cm} 4\hspace{0.05cm}\cdot\hspace{0.05cm}{\rm E}\big[ b\hspace{0.05cm}\cdot \hspace{0.05cm}c\big].$$
  
:<b>4.</b>&nbsp;&nbsp;Nach den allgemeinen Regeln f&uuml;r Erwartungswerte gilt mit <i>p</i> = 0.25:
+
*Da aber&nbsp; $a$&nbsp; und&nbsp; $b$&nbsp; statistisch voneinander unabh&auml;ngig sind,&nbsp; gilt auch:
:$$m_{\it d} = \rm E[\it a-\rm 2\it b+\it c]=\rm E[\it a] \hspace{0.1cm} -\hspace{0.1cm}\rm 2 \hspace{0.05cm}\cdot\hspace{0.05cm}\rm E[\it b]\hspace{0.1cm}+\hspace{0.1cm}\rm E[\it c] \\ = \it m_{\it a}\hspace{0.1cm}-\hspace{0.1cm}\rm 2\hspace{0.05cm}\cdot\hspace{0.05cm}\it m_{\it b}\hspace{0.1cm}+\hspace{0.1cm}\it m_{\it c} =  \rm 0-2\hspace{0.05cm}\cdot\hspace{0.05cm}\it p + \rm 0 \hspace{0.15cm} \underline{= -0.5}.$$
+
:$${\rm E}\big[a\cdot b\big] = {\rm E}\big[ a\big] \cdot {\rm E}\big[ b\big]= m_{ a}\cdot m_{ b} = 0, \hspace{0.2cm} {\rm da}\hspace{0.2cm} m_{ a}=\rm 0.$$
  
:<b>5.</b>&nbsp;&nbsp;Analog zu Punkt 4. erh&auml;lt man für den quadratischen Mittelwert:
+
*Gleiches gilt f&uuml;r die anderen gemischten Terme.&nbsp; Daher erh&auml;lt man mit&nbsp; $p = 0.25$:
:$$m_{\rm 2\it d}=\rm E[( a-\rm 2\it b+\it c)^{\rm 2}] = \rm E[\it a^{\rm 2}]\hspace{0.1cm}+\hspace{0.1cm}\rm 4\hspace{0.05cm}\cdot\hspace{0.05cm}\rm E[\it b^{\rm 2}]\hspace{0.1cm}+\hspace{0.1cm}\rm E[\rm \it c^{\rm 2}]\hspace{0.1cm}\\  -  \hspace{0.1cm}\rm 4\hspace{0.05cm}\cdot\hspace{0.05cm}\rm E[\it a\hspace{0.05cm}\cdot \hspace{0.05cm}b]\hspace{0.1cm}+\hspace{0.1cm}\rm 2\hspace{0.05cm}\cdot\hspace{0.05cm}\rm E[\it a\hspace{0.05cm}\cdot \hspace{0.05cm}c]\hspace{0.1cm}-\hspace{0.1cm}\rm 4\hspace{0.05cm}\cdot\hspace{0.05cm}\rm E[\it b\hspace{0.05cm}\cdot \hspace{0.05cm}c].$$
+
:$$ m_{2 d}=m_{2 a}+4\cdot m_{ 2 b}+m_{ 2 c}=1+4\cdot p+0.5\hspace{0.15cm} \underline{=\rm 2.5}.$$
  
:Da aber <i>a</i> und <i>b</i> statistisch voneinander unabh&auml;ngig sind, gilt auch:
 
:$$\rm E[\it a\cdot b] = \rm E[\it a] \cdot \rm E[\it b]= \it m_{\it a}\cdot \it m_{\it b} = \rm 0, \hspace{0.1cm} da\hspace{0.1cm} \it m_{\it a}=\rm 0.$$
 
  
:Gleiches gilt f&uuml;r die anderen gemischten Terme. Daher erh&auml;lt man mit <i>p</i> = 0.25:
 
:$$ \it m_{\rm 2\it d}=\it m_{\rm 2\it a}+\rm 4\cdot\it m_{\rm 2\it b}+\it m_{\rm 2\it c}=\rm 1+4\cdot \it p+\rm 0.5\hspace{0.15cm} \underline{=\rm 2.5}.$$
 
  
:<b>6.</b>&nbsp;&nbsp;Für allgemeines <i>p</i> bzw. f&uuml;r <i>p</i> = 0.25 ergibt sich:
+
'''(6)'''&nbsp; Für allgemeines&nbsp; $p$ &nbsp;bzw.&nbsp; f&uuml;r&nbsp; $p = 0.25$&nbsp; ergibt sich:
:$$\it \sigma_{\it d}^{\rm 2}=\rm1.5+4\cdot \it p - \rm 4 \cdot \it p^{\rm 2}=\rm 2.25 \hspace{0.5cm}\Rightarrow \hspace{0.5cm} \it \sigma_{\it d}\hspace{0.15cm} \underline{=\rm 1.5}.$$
+
:$$\sigma_{\it d}^{\rm 2}=1.5+4\cdot p - 4 \cdot p^{\rm 2}=2.25 \hspace{0.5cm}\Rightarrow \hspace{0.5cm} \sigma_{d}\hspace{0.15cm} \underline{=\rm 1.5}.$$
  
:Die maximale Varianz erg&auml;be sich f&uuml;r <i>p</i> = 0.5 zu <i>&sigma;</i><sub><i>d</i></sub><sup>2</sup> = 2.5.
+
*Die maximale Varianz erg&auml;be sich f&uuml;r&nbsp; $p = 0.50$&nbsp; &nbsp;zu&nbsp; $\sigma_{\it d}^{\rm 2}=2.50$.
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
  
[[Category:Aufgaben zu Stochastische Signaltheorie|^2.2 Momente einer diskreten Zufallsgröße^]]
+
[[Category:Aufgaben zu Stochastische Signaltheorie|^2.2 Momente diskreter Zufallsgrößen^]]

Aktuelle Version vom 7. Dezember 2021, 14:07 Uhr

Verschiedene Rechtecksignale

Gegeben seien drei diskrete Zufallsgrößen  $a$,  $b$  und  $c$,  die als die Momentanwerte der dargestellten Signale definiert seien.  Diese besitzen folgende Eigenschaften:

  • Die Zufallsgröße  $a$  kann die Werte  $+1$  und  $-1$  mit gleicher Wahrscheinlichkeit annehmen.
  • Auch die Zufallsgröße  $b$  ist zweipunktverteilt, aber mit  ${\rm Pr}(b = 1) = p$  und  ${\rm Pr}(b = 0) = 1 - p$.
  • Die Wahrscheinlichkeiten von  $c$  seien  ${\rm Pr}(c = 0) = 1/2$  und  ${\rm Pr}(c = +1) = Pr(c = -1) =1/4$.
  • Zwischen den drei Zufallsgrößen  $a$,  $b$  und  $c$  bestehen keine statistischen Abhängigkeiten.
  • Aus den Zufallsgrößen  $a$,  $b$  und  $c$  wird eine weitere Zufallsvariable  $d=a-2 b+c$  gebildet.


Die Grafik zeigt Signalsusschnitte.  Man erkennt,  dass  $d$  alle ganzzahligen Werte zwischen  $-4$  und  $+2$  annehmen kann.





Hinweise:


Fragebogen

1

Wie groß ist die Streuung  (Standardabweichung)  der Zufallsgröße  $a$?

$\sigma_a \ = \ $

2

Wie groß ist die Streuung der Zufallsgröße  $b$?  Setzen Sie  $p = 0.25$.

$\sigma_b \ = \ $

3

Wie groß ist die Streuung der Zufallsgröße  $c$?

$\sigma_c \ = \ $

4

Berechnen Sie den Mittelwert  $m_d$  der Zufallsgröße  $d$  für $p = 0.25$.

$m_d\ = \ $

5

Wie groß ist der quadratische Mittelwert  $m_{2d}$  dieser Zufallsgröße?

$m_{2d}\ = \ $

6

Wie groß ist die Streuung  $\sigma_d$?

$\sigma_d\ = \ $


Musterlösung

(1)  Aufgrund der Symmetrie gilt:

$$\rm \it m_{\it a}=\rm 0; \hspace{0.5cm}\it m_{\rm 2\it a}=\rm 0.5\cdot (-1)^2 + 0.5\cdot (1)^2{ = 1}.$$
  • Daraus erhält man mit dem Satz von Steiner:
$$\it\sigma_a^{\rm 2} = \rm\sqrt{1-0^2}=1 \hspace{0.5cm}bzw. \hspace{0.5cm}\it\sigma_a\hspace{0.15cm} \underline{=\rm 1}.$$


(2)  Allgemein gilt für das Moment  $k$–ter Ordnung:

$$ m_{k}=(1-p)\cdot 0^{ k} + p\cdot 1^{k}= p.$$
  • Daraus folgt mit  $p = 1/4$:
$$m_{b}= m_{2b}= p, \hspace{0.5cm} \sigma_{\it b}=\sqrt{p\cdot (1- p)}\hspace{0.15cm} \underline{=\rm 0.433} .$$


(3)  Für die Zufallsgröße  $c$  gilt:

$$m_{\it c} = 0\hspace{0.3cm} ({\rm symmetrisch\hspace{0.1cm}um\hspace{0.1cm}0)},$$
$$ m_{2\it c}= {1}/{4}\cdot(-1)^2+{1}/{2}\cdot 0^2+{1}/{4}\cdot (1)^2={1}/{2} \hspace{0.5cm}$$
$$\Rightarrow \hspace{0.5cm}\sigma_{\it c}=\rm \sqrt{1/2}\hspace{0.15cm} \underline{=0.707}.$$


(4)  Nach den allgemeinen Regeln für Erwartungswerte gilt mit  $p = 0.25$:

$$m_{\it d} = {\rm E}\big[a-2 b+c\big]= {\rm E}\big[a\big] \hspace{0.1cm} -\hspace{0.1cm}\rm 2 \hspace{0.05cm}\cdot\hspace{0.05cm} {\rm E}\big[ b\big]\hspace{0.1cm}+\hspace{0.1cm} {\rm E}\big[ c\big] = m_{ a}\hspace{0.1cm}-\hspace{0.1cm}2\hspace{0.05cm}\cdot\hspace{0.05cm} m_{\it b}\hspace{0.1cm}+\hspace{0.1cm} m_{\it c} = 0-2\hspace{0.05cm}\cdot\hspace{0.05cm} p + 0 \hspace{0.15cm} \underline{= -0.5}.$$


(5)  Analog zur Teilaufgabe  (4)  erhält man für den quadratischen Mittelwert:

$$m_{2d}= {\rm E}\big[( a-2b+c)^{\rm 2}\big] = {\rm E}\big[a^{\rm 2}\big]\hspace{0.1cm}+\hspace{0.1cm}4\hspace{0.05cm}\cdot\hspace{0.05cm} {\rm E}\big[ b^{\rm 2}\big]\hspace{0.1cm}+\hspace{0.1cm} {\rm E}\big[c^{\rm 2}\big]\hspace{0.1cm} - \hspace{0.1cm}4\hspace{0.05cm}\cdot\hspace{0.05cm} {\rm E}\big[a\hspace{0.05cm}\cdot \hspace{0.05cm}b\big]\hspace{0.1cm}+\hspace{0.1cm} 2\hspace{0.05cm}\cdot\hspace{0.05cm}{\rm E}\big[ a\hspace{0.05cm}\cdot \hspace{0.05cm}c\big]\hspace{0.1cm}-\hspace{0.1cm} 4\hspace{0.05cm}\cdot\hspace{0.05cm}{\rm E}\big[ b\hspace{0.05cm}\cdot \hspace{0.05cm}c\big].$$
  • Da aber  $a$  und  $b$  statistisch voneinander unabhängig sind,  gilt auch:
$${\rm E}\big[a\cdot b\big] = {\rm E}\big[ a\big] \cdot {\rm E}\big[ b\big]= m_{ a}\cdot m_{ b} = 0, \hspace{0.2cm} {\rm da}\hspace{0.2cm} m_{ a}=\rm 0.$$
  • Gleiches gilt für die anderen gemischten Terme.  Daher erhält man mit  $p = 0.25$:
$$ m_{2 d}=m_{2 a}+4\cdot m_{ 2 b}+m_{ 2 c}=1+4\cdot p+0.5\hspace{0.15cm} \underline{=\rm 2.5}.$$


(6)  Für allgemeines  $p$  bzw.  für  $p = 0.25$  ergibt sich:

$$\sigma_{\it d}^{\rm 2}=1.5+4\cdot p - 4 \cdot p^{\rm 2}=2.25 \hspace{0.5cm}\Rightarrow \hspace{0.5cm} \sigma_{d}\hspace{0.15cm} \underline{=\rm 1.5}.$$
  • Die maximale Varianz ergäbe sich für  $p = 0.50$   zu  $\sigma_{\it d}^{\rm 2}=2.50$.