Aufgaben:Aufgabe 2.3: Summe von Binärzahlen: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
 
(4 dazwischenliegende Versionen desselben Benutzers werden nicht angezeigt)
Zeile 3: Zeile 3:
 
}}
 
}}
  
[[Datei:P_ID86__Sto_A_2_3.png|right|frame|Summe von Binärzahlen]]
+
[[Datei:P_ID86__Sto_A_2_3.png|right|frame|Betrachteter Zufallsgenerator]]
Ein Zufallsgenerator gibt zu jedem Taktzeitpunkt ($\nu$) eine binäre Zufallszahl $x_\nu$ ab, die $0$ oder $1$ sein kann.  
+
Ein Zufallsgenerator gibt zu jedem Taktzeitpunkt  $(\nu)$  eine binäre Zufallszahl  $x_\nu$  ab,  die  $0$  oder  $1$  sein kann.  
*Der Wert „1” tritt mit Wahrscheinlichkeit $p = 0.25$ auf.  
+
*Der Wert „1” tritt mit der Wahrscheinlichkeit  $p = 0.25$  auf.  
*Die einzelnen Werte  $x_\nu$ seien statistisch voneinander unabhängig.
+
*Die einzelnen Werte  $x_\nu$  seien statistisch voneinander unabhängig.
  
  
Die Binärzahlen werden in ein Schieberegister mit $I = 6$ Speicherzellen abgelegt.  
+
Die Binärzahlen werden in ein Schieberegister mit  $I = 6$  Speicherzellen abgelegt.  
  
Zu jedem Taktzeitpunkt wird der Inhalt dieses Schieberegisters um eine Stelle nach rechts verschoben und jeweils die algebraische Summe $y_\nu$ der Schieberegisterinhalte gebildet:
+
Zu jedem Taktzeitpunkt wird der Inhalt dieses Schieberegisters um eine Stelle nach rechts verschoben und jeweils die algebraische Summe  $y_\nu$  der Schieberegisterinhalte gebildet:
 
:$$y_{\nu}=\sum\limits_{i=0}^{5}x_{\nu-i}=x_{\nu}+x_{\nu-1}+\ \text{...} \ +x_{\nu-5}.$$
 
:$$y_{\nu}=\sum\limits_{i=0}^{5}x_{\nu-i}=x_{\nu}+x_{\nu-1}+\ \text{...} \ +x_{\nu-5}.$$
 +
 +
 +
  
  
Zeile 18: Zeile 21:
  
 
''Hinweise:''  
 
''Hinweise:''  
*Die Aufgabe gehört zum  Kapitel [[Stochastische_Signaltheorie/Binomialverteilung|Binomialverteilung]].
+
*Die Aufgabe gehört zum  Kapitel  [[Stochastische_Signaltheorie/Binomialverteilung|Binomialverteilung]].
 
   
 
   
*Zur Kontrolle Ihrer Ergebnisse können Sie das interaktiven Applet [[Applets:Binomial-_und_Poissonverteilung_(Applet)|Binomial– und Poissonverteilung]] benutzen.
+
*Zur Kontrolle Ihrer Ergebnisse können Sie das interaktive Applet  [[Applets:Binomial-_und_Poissonverteilung_(Applet)|Binomial– und Poissonverteilung]]  benutzen.
  
  
Zeile 29: Zeile 32:
  
 
<quiz display=simple>
 
<quiz display=simple>
{Welche Werte kann die Summe $y$ annehmen? Was ist der gr&ouml;&szlig;tm&ouml;gliche Wert?
+
{Welche Werte kann die Summe&nbsp; $y$&nbsp; annehmen?&nbsp; Was ist der gr&ouml;&szlig;tm&ouml;gliche Wert?
 
|type="{}"}
 
|type="{}"}
 
$y_\max \ = \ $  { 6 3% }
 
$y_\max \ = \ $  { 6 3% }
  
  
{Berechnen Sie die Wahrscheinlichkeit, dass $y$ gr&ouml;&szlig;er als $2$ ist.
+
{Berechnen Sie die Wahrscheinlichkeit, dass&nbsp; $y$&nbsp; gr&ouml;&szlig;er als&nbsp; $2$&nbsp; ist.
 
|type="{}"}
 
|type="{}"}
 
${\rm Pr}(y > 2) \ = \ $ { 0.169 3% }
 
${\rm Pr}(y > 2) \ = \ $ { 0.169 3% }
  
  
{Wie gro&szlig; ist der Mittelwert der Zufallsgr&ouml;&szlig;e $y$?
+
{Wie gro&szlig; ist der Mittelwert der Zufallsgr&ouml;&szlig;e&nbsp; $y$&nbsp;?
 
|type="{}"}
 
|type="{}"}
 
$m_y \ =$ { 1.5 3% }
 
$m_y \ =$ { 1.5 3% }
  
  
{Ermitteln Sie die Streuung der Zufallsgr&ouml;&szlig;e $y$.  
+
{Ermitteln Sie die Streuung der Zufallsgr&ouml;&szlig;e&nbsp; $y$.  
 
|type="{}"}
 
|type="{}"}
 
$\sigma_y \ = \ $ { 1.061 3% }
 
$\sigma_y \ = \ $ { 1.061 3% }
  
  
{Sind die Zufallszahlen $y_\nu$ unabh&auml;ngig? Begr&uuml;nden Sie Ihr Ergebnis.
+
{Sind die Zufallszahlen&nbsp; $y_\nu$&nbsp; statistisch unabh&auml;ngig?&nbsp; Begr&uuml;nden Sie Ihr Ergebnis.
|type="[]"}
+
|type="()"}
 
- Die Zufallszahlen sind statistisch unabh&auml;ngig.
 
- Die Zufallszahlen sind statistisch unabh&auml;ngig.
 
+ Die Zufallszahlen sind statistisch abh&auml;ngig.
 
+ Die Zufallszahlen sind statistisch abh&auml;ngig.
  
  
{Wie groß ist die bedingte Wahrscheinlichkeit, dass $y_\nu$ wieder gleich $\mu$ ist, wenn vorher $y_{\nu-1} = \mu$ aufgetreten ist? ($\mu = 0,1, \ \text{...} \ , I$).
+
{Wie groß ist die bedingte Wahrscheinlichkeit, dass&nbsp; $y_\nu$&nbsp; wieder gleich&nbsp; $\mu$&nbsp; ist, wenn vorher&nbsp; $y_{\nu-1} = \mu$&nbsp; aufgetreten ist?&nbsp; $(\mu = 0, \ 1, \ \text{...} \ , \ I)$.
 
|type="{}"}
 
|type="{}"}
 
${\rm Pr}(y_\nu = \mu \hspace{0.05cm} | \hspace{0.05cm} y_{\nu-1} = \mu ) \ = \ $ { 0.625 3% }
 
${\rm Pr}(y_\nu = \mu \hspace{0.05cm} | \hspace{0.05cm} y_{\nu-1} = \mu ) \ = \ $ { 0.625 3% }
Zeile 64: Zeile 67:
 
===Musterlösung===
 
===Musterlösung===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; In jeder Zelle kann eine $0$ oder eine $1$ stehen; deshalb kann die Summe alle ganzzahligen Werte zwischen $0$ und $6$ annehmen:
+
'''(1)'''&nbsp; In jeder Zelle kann eine&nbsp; $0$&nbsp; oder eine&nbsp; $1$&nbsp; stehen.&nbsp; Deshalb kann die Summe alle ganzzahligen Werte zwischen&nbsp; $0$&nbsp; und&nbsp; $6$&nbsp; annehmen:
$$y_{\nu}\in\{0,1,...,6\}\hspace{0.3cm}\Rightarrow\hspace{0.3cm}
+
:$$y_{\nu}\in\{0,1,\ \text{...} \ ,6\}\hspace{0.3cm}\Rightarrow\hspace{0.3cm}
 
y_{\rm max} \hspace{0.15cm} \underline{= 6}.$$
 
y_{\rm max} \hspace{0.15cm} \underline{= 6}.$$
  
'''(2)'''&nbsp; Es liegt eine Binomialverteilung vor. Daher gilt mit $p = 0.25$:
+
 
$${\rm Pr}(y =0)=(1-p)^{\it I}=0.75^6=0.178,$$
+
 
$${\rm Pr}(y=1)=\left({ I \atop {1}}\right)\cdot (1-p)^{I-1}\cdot p= \rm 6\cdot 0.75^5\cdot 0.25=0.356,$$
+
'''(2)'''&nbsp; Es liegt eine Binomialverteilung vor.&nbsp; Daher gilt mit&nbsp; $p = 0.25$:
$${\rm Pr}(y=2)=\left({ I \atop { 2}}\right)\cdot (1-p)^{I-2}\cdot p^{\rm 2}= \rm 15\cdot 0.75^4\cdot 0.25^2=0.297,$$
+
:$${\rm Pr}(y =0)=(1-p)^{\it I}=0.75^6=0.178,$$
$${\rm Pr}(y>2)=1-{\rm Pr}(y=0)-{\rm Pr}( y=1)-{\rm Pr}( y=2)\hspace{0.15cm} \underline{=\rm 0.169}.$$
+
:$${\rm Pr}(y=1)=\left({ I \atop {1}}\right)\cdot (1-p)^{I-1}\cdot p= \rm 6\cdot 0.75^5\cdot 0.25=0.356,$$
 +
:$${\rm Pr}(y=2)=\left({ I \atop { 2}}\right)\cdot (1-p)^{I-2}\cdot p^{\rm 2}= \rm 15\cdot 0.75^4\cdot 0.25^2=0.297,$$
 +
:$$\Rightarrow \hspace{0.3cm}{\rm Pr}(y>2)=1-{\rm Pr}(y=0)-{\rm Pr}( y=1)-{\rm Pr}( y=2)\hspace{0.15cm} \underline{=\rm 0.169}.$$
 +
 
 +
 
  
 
'''(3)'''&nbsp; Nach der allgemeinen Gleichung gilt  f&uuml;r den Mittelwert der Binomialverteilung:
 
'''(3)'''&nbsp; Nach der allgemeinen Gleichung gilt  f&uuml;r den Mittelwert der Binomialverteilung:
$$m_y= I\cdot p\hspace{0.15cm} \underline{=\rm 1.5}.$$
+
:$$m_y= I\cdot p\hspace{0.15cm} \underline{=\rm 1.5}.$$
 +
 
 +
 
  
 
'''(4)'''&nbsp; Entsprechend gilt f&uuml;r die Streuung der Binomialverteilung:
 
'''(4)'''&nbsp; Entsprechend gilt f&uuml;r die Streuung der Binomialverteilung:
$$\sigma_y=\sqrt{ I \cdot p \cdot( 1- p)} \hspace{0.15cm} \underline{= \rm 1.061}.$$
+
:$$\sigma_y=\sqrt{ I \cdot p \cdot( 1- p)} \hspace{0.15cm} \underline{= \rm 1.061}.$$
 +
 
 +
 
 +
 
 +
'''(5)'''&nbsp; Richtig ist der  <u>Lösungsvorschlag 2</u>:
 +
*Ist&nbsp; $y_\nu = 0$,&nbsp; so k&ouml;nnen zum n&auml;chsten Zeitpunkt nur die Werte&nbsp; $0$&nbsp; und&nbsp; $1$&nbsp; folgen, nicht aber&nbsp; $2$, ... , $6$.
 +
*Das hei&szlig;t: &nbsp; Die Folge&nbsp; $ \langle y_\nu \rangle$&nbsp; weist (starke) statistische Bindungen auf.
 +
 
  
'''(5)'''&nbsp; Ist $y_\nu = 0$, so k&ouml;nnen zum n&auml;chsten Zeitpunkt nur die Werte $0$ und $1$ folgen, nicht aber $2, ... , 6$. Das hei&szlig;t: Die Folge $ \langle y_\nu \rangle$ weist (starke) statistische Bindungen auf &nbsp;&#8658;&nbsp; <u>Lösungsvorschlag 2</u>.
 
  
'''(6)'''&nbsp; Die gesuchte Wahrscheinlichkeit ist identisch mit der Wahrscheinlichkeit daf&uuml;r, dass das neue Bin&auml;rsymbol gleich dem aus dem Schieberegister herausgefallenen Symbol ist. Daraus folgt:
+
'''(6)'''&nbsp; Die gesuchte Wahrscheinlichkeit ist identisch mit der Wahrscheinlichkeit daf&uuml;r,&nbsp; dass das neue Bin&auml;rsymbol gleich dem aus dem Schieberegister herausgefallenen Symbol ist. Daraus folgt:
$$\rm Pr (\it y_{\nu} = \mu\hspace{0.05cm}| \hspace{0.05cm} y_{\nu-{\rm 1}} = \mu) = \rm Pr(\it x_{\nu}= x_{\nu-\rm 6}). $$
+
:$${\rm Pr} (y_{\nu} = \mu\hspace{0.05cm}| \hspace{0.05cm} y_{\nu-{1}} = \mu) = {\rm Pr}(x_{\nu}= x_{\nu-6}). $$
  
Da die Symbole $x_\nu$ statistisch voneinander unabh&auml;ngig sind, kann hierf&uuml;r auch geschrieben werden:
+
*Da die Symbole&nbsp; $x_\nu$&nbsp; statistisch voneinander unabh&auml;ngig sind, kann hierf&uuml;r auch geschrieben werden:
$${\rm Pr}(x_{\nu} = x_{\nu-6}) = {\rm Pr}\left[(x_{\nu}= 1)\hspace{0.05cm}\cap\hspace{0.05cm}(x_{\nu-6}= 1)\hspace{0.05cm}\cup \hspace{0.05cm}(x_\nu=0)\hspace{0.05cm}\cap\hspace{0.05cm}(x_{\nu-6} =0)\right]= p^{2}+(1- p)^{2}=\rm 0.25^2 + 0.75^2\hspace{0.15cm} \underline{ = 0.625}. $$
+
:$${\rm Pr}(x_{\nu} = x_{\nu-6}) = {\rm Pr}\big[(x_{\nu}= 1)\hspace{0.05cm}\cap\hspace{0.05cm}(x_{\nu-6}= 1)\hspace{0.05cm}\cup \hspace{0.05cm}(x_\nu=0)\hspace{0.05cm}\cap\hspace{0.05cm}(x_{\nu-6} =0)\big]= p^{2}+(1- p)^{2}=\rm 0.25^2 + 0.75^2\hspace{0.15cm} \underline{ = 0.625}. $$
  
 
{{ML-Fuß}}
 
{{ML-Fuß}}

Aktuelle Version vom 11. Dezember 2021, 13:42 Uhr

Betrachteter Zufallsgenerator

Ein Zufallsgenerator gibt zu jedem Taktzeitpunkt  $(\nu)$  eine binäre Zufallszahl  $x_\nu$  ab,  die  $0$  oder  $1$  sein kann.

  • Der Wert „1” tritt mit der Wahrscheinlichkeit  $p = 0.25$  auf.
  • Die einzelnen Werte  $x_\nu$  seien statistisch voneinander unabhängig.


Die Binärzahlen werden in ein Schieberegister mit  $I = 6$  Speicherzellen abgelegt.

Zu jedem Taktzeitpunkt wird der Inhalt dieses Schieberegisters um eine Stelle nach rechts verschoben und jeweils die algebraische Summe  $y_\nu$  der Schieberegisterinhalte gebildet:

$$y_{\nu}=\sum\limits_{i=0}^{5}x_{\nu-i}=x_{\nu}+x_{\nu-1}+\ \text{...} \ +x_{\nu-5}.$$




Hinweise:



Fragebogen

1

Welche Werte kann die Summe  $y$  annehmen?  Was ist der größtmögliche Wert?

$y_\max \ = \ $

2

Berechnen Sie die Wahrscheinlichkeit, dass  $y$  größer als  $2$  ist.

${\rm Pr}(y > 2) \ = \ $

3

Wie groß ist der Mittelwert der Zufallsgröße  $y$ ?

$m_y \ =$

4

Ermitteln Sie die Streuung der Zufallsgröße  $y$.

$\sigma_y \ = \ $

5

Sind die Zufallszahlen  $y_\nu$  statistisch unabhängig?  Begründen Sie Ihr Ergebnis.

Die Zufallszahlen sind statistisch unabhängig.
Die Zufallszahlen sind statistisch abhängig.

6

Wie groß ist die bedingte Wahrscheinlichkeit, dass  $y_\nu$  wieder gleich  $\mu$  ist, wenn vorher  $y_{\nu-1} = \mu$  aufgetreten ist?  $(\mu = 0, \ 1, \ \text{...} \ , \ I)$.

${\rm Pr}(y_\nu = \mu \hspace{0.05cm} | \hspace{0.05cm} y_{\nu-1} = \mu ) \ = \ $


Musterlösung

(1)  In jeder Zelle kann eine  $0$  oder eine  $1$  stehen.  Deshalb kann die Summe alle ganzzahligen Werte zwischen  $0$  und  $6$  annehmen:

$$y_{\nu}\in\{0,1,\ \text{...} \ ,6\}\hspace{0.3cm}\Rightarrow\hspace{0.3cm} y_{\rm max} \hspace{0.15cm} \underline{= 6}.$$


(2)  Es liegt eine Binomialverteilung vor.  Daher gilt mit  $p = 0.25$:

$${\rm Pr}(y =0)=(1-p)^{\it I}=0.75^6=0.178,$$
$${\rm Pr}(y=1)=\left({ I \atop {1}}\right)\cdot (1-p)^{I-1}\cdot p= \rm 6\cdot 0.75^5\cdot 0.25=0.356,$$
$${\rm Pr}(y=2)=\left({ I \atop { 2}}\right)\cdot (1-p)^{I-2}\cdot p^{\rm 2}= \rm 15\cdot 0.75^4\cdot 0.25^2=0.297,$$
$$\Rightarrow \hspace{0.3cm}{\rm Pr}(y>2)=1-{\rm Pr}(y=0)-{\rm Pr}( y=1)-{\rm Pr}( y=2)\hspace{0.15cm} \underline{=\rm 0.169}.$$


(3)  Nach der allgemeinen Gleichung gilt für den Mittelwert der Binomialverteilung:

$$m_y= I\cdot p\hspace{0.15cm} \underline{=\rm 1.5}.$$


(4)  Entsprechend gilt für die Streuung der Binomialverteilung:

$$\sigma_y=\sqrt{ I \cdot p \cdot( 1- p)} \hspace{0.15cm} \underline{= \rm 1.061}.$$


(5)  Richtig ist der Lösungsvorschlag 2:

  • Ist  $y_\nu = 0$,  so können zum nächsten Zeitpunkt nur die Werte  $0$  und  $1$  folgen, nicht aber  $2$, ... , $6$.
  • Das heißt:   Die Folge  $ \langle y_\nu \rangle$  weist (starke) statistische Bindungen auf.


(6)  Die gesuchte Wahrscheinlichkeit ist identisch mit der Wahrscheinlichkeit dafür,  dass das neue Binärsymbol gleich dem aus dem Schieberegister herausgefallenen Symbol ist. Daraus folgt:

$${\rm Pr} (y_{\nu} = \mu\hspace{0.05cm}| \hspace{0.05cm} y_{\nu-{1}} = \mu) = {\rm Pr}(x_{\nu}= x_{\nu-6}). $$
  • Da die Symbole  $x_\nu$  statistisch voneinander unabhängig sind, kann hierfür auch geschrieben werden:
$${\rm Pr}(x_{\nu} = x_{\nu-6}) = {\rm Pr}\big[(x_{\nu}= 1)\hspace{0.05cm}\cap\hspace{0.05cm}(x_{\nu-6}= 1)\hspace{0.05cm}\cup \hspace{0.05cm}(x_\nu=0)\hspace{0.05cm}\cap\hspace{0.05cm}(x_{\nu-6} =0)\big]= p^{2}+(1- p)^{2}=\rm 0.25^2 + 0.75^2\hspace{0.15cm} \underline{ = 0.625}. $$