Aufgaben:Aufgabe 1.08Z: Äquivalente Codes: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
 
(12 dazwischenliegende Versionen von 3 Benutzern werden nicht angezeigt)
Zeile 3: Zeile 3:
 
}}
 
}}
  
[[Datei:P_ID2394__KC_Z_1_8.png|right|frame|Vier verschiedene (6, 3)–Blockcodes]]
+
[[Datei:P_ID2394__KC_Z_1_8.png|right|frame|Vier  $(6, 3)$–Blockcodes]]
  
In der Grafik sind die Zuordnungen $\underline{u} \underline{x}$ für verschiedene Codes angegeben, die im Folgenden jeweils durch die Generatormatrix '''G''' und die Prüfmatrix '''H''' charakterisiert werden:
+
In der Grafik sind die Zuordnungen  $\underline{u} \rightarrow \underline{x}$  für verschiedene Codes angegeben,  die im Folgenden jeweils durch die Generatormatrix  $\boldsymbol{\rm G}$  und die Prüfmatrix  $\boldsymbol{\rm H}$  charakterisiert werden:
  
*$\color{red}{\boldsymbol{\rm Code \ A}}$:
+
*${\boldsymbol{\rm Code \ A}}$:
:$${ \boldsymbol{\rm G}}_{\rm A} = \begin{pmatrix} 1 &0 &0 &1 &1 &0\\ 0 &1 &0 &1 &0 &1\\ 0 &0 &1 &0 &1 &1 \end{pmatrix} \hspace{0.05cm},$$
+
:$${ \boldsymbol{\rm G}}_{\rm A} = \begin{pmatrix} 1 &0 &0 &1 &1 &0\\ 0 &1 &0 &1 &0 &1\\ 0 &0 &1 &0 &1 &1 \end{pmatrix} \hspace{0.05cm},\hspace{0.5cm}{ \boldsymbol{\rm H}}_{\rm A} = \begin{pmatrix} 1 &1 &0 &1 &0 &0\\ 1 &0 &1 &0 &1 &0\\ 0 &1 &1 &0 &0 &1 \end{pmatrix} \hspace{0.05cm}.$$
:$${ \boldsymbol{\rm H}}_{\rm A} = \begin{pmatrix} 1 &1 &0 &1 &0 &0\\ 1 &0 &1 &0 &1 &0\\ 0 &1 &1 &0 &0 &1 \end{pmatrix} \hspace{0.05cm}.$$
 
  
*$\color{red}{\boldsymbol{\rm Code \ B}}$:
+
*${\boldsymbol{\rm Code \ B}}$:
:$${ \boldsymbol{\rm G}}_{\rm B} = \begin{pmatrix} 0 &0 &1 &0 &1 &1\\ 1 &0 &0 &1 &1 &0\\ 0 &1 &1 &1 &1 &0 \end{pmatrix} \hspace{0.05cm},$$
+
:$${ \boldsymbol{\rm G}}_{\rm B} = \begin{pmatrix} 0 &0 &1 &0 &1 &1\\ 1 &0 &0 &1 &1 &0\\ 0 &1 &1 &1 &1 &0 \end{pmatrix} \hspace{0.05cm},\hspace{0.5cm} { \boldsymbol{\rm H}}_{\rm B} = \begin{pmatrix} 1 &0 &1 &0 &1 &0\\ 1 &1 &0 &1 &0 &0\\ 0 &1 &1 &0 &0 &1 \end{pmatrix} \hspace{0.05cm}.$$
:$$ { \boldsymbol{\rm H}}_{\rm B} = \begin{pmatrix} 1 &0 &1 &0 &1 &0\\ 1 &1 &0 &1 &0 &0\\ 0 &1 &1 &0 &0 &1 \end{pmatrix} \hspace{0.05cm}.$$
 
  
*$\color{red}{\boldsymbol{\rm Code \ C}}$:
+
*${\boldsymbol{\rm Code \ C}}$:
:$${ \boldsymbol{\rm G}}_{\rm C} = \begin{pmatrix} 1 &0 &0 &1 &0 &1\\ 0 &1 &0 &0 &1 &1\\ 0 &0 &1 &1 &1 &1 \end{pmatrix} \hspace{0.05cm},{ \boldsymbol{\rm H}}_{\rm C} = \begin{pmatrix} 1 &0 &1 &1 &0 &0\\ 0 &1 &1 &0 &1 &0\\ 1 &1 &1 &0 &0 &1 \end{pmatrix} \hspace{0.05cm},$$
+
:$${ \boldsymbol{\rm G}}_{\rm C} = \begin{pmatrix} 1 &0 &0 &1 &0 &1\\ 0 &1 &0 &0 &1 &1\\ 0 &0 &1 &1 &1 &1 \end{pmatrix} \hspace{0.05cm},\hspace{0.5cm}{ \boldsymbol{\rm H}}_{\rm C} = \begin{pmatrix} 1 &0 &1 &1 &0 &0\\ 0 &1 &1 &0 &1 &0\\ 1 &1 &1 &0 &0 &1 \end{pmatrix} \hspace{0.05cm},$$
  
*$\color{red}{\boldsymbol{\rm Code \ D}}$:
+
*${\boldsymbol{\rm Code \ D}}$:
:$${ \boldsymbol{\rm G}}_{\rm D} = \begin{pmatrix} 1 &0 &0 &1 &0 &1\\ 0 &1 &0 &1 &0 &0\\ 0 &0 &1 &0 &1 &0 \end{pmatrix} \hspace{0.05cm},{ \boldsymbol{\rm H}}_{\rm D} = \begin{pmatrix} 1 &1 &0 &1 &0 &0\\ 0 &0 &1 &0 &1 &0\\ 1 &0 &0 &0 &0 &1 \end{pmatrix} \hspace{0.05cm}.$$
+
:$${ \boldsymbol{\rm G}}_{\rm D} = \begin{pmatrix} 1 &0 &0 &1 &0 &1\\ 0 &1 &0 &1 &0 &0\\ 0 &0 &1 &0 &1 &0 \end{pmatrix} \hspace{0.05cm},\hspace{0.5cm}{ \boldsymbol{\rm H}}_{\rm D} = \begin{pmatrix} 1 &1 &0 &1 &0 &0\\ 0 &0 &1 &0 &1 &0\\ 1 &0 &0 &0 &0 &1 \end{pmatrix} \hspace{0.05cm}.$$
  
In dieser Aufgabe soll untersucht werden, welche dieser Codes bzw. Codepaare
+
In dieser Aufgabe soll untersucht werden,  welche dieser Codes bzw. Codepaare
  
 
*systematisch sind,
 
*systematisch sind,
*identisch sind (das heißt: Verschiedene Codes haben gleiche Codeworte),
+
*identisch sind  (das heißt:   Verschiedene Codes haben gleiche Codeworte),
*äquivalent sind (das heißt: Verschiedene Codes haben gleiche Codeparameter).
+
*äquivalent sind  (das heißt:   Verschiedene Codes haben gleiche Codeparameter).
  
  
''Hinweis'' :
 
  
Die Aufgabe gehört zum Themengebiet von Kapitel [[Kanalcodierung/Allgemeine_Beschreibung_linearer_Blockcodes|Allgemeine Beschreibung linearer
+
Hinweise:
Blockcodes]] Anzumerken ist, dass die Angabe einer Prüfmatrix '''H''' nicht eindeutig ist. Verändert man die Reihenfolge der Prüfgleichungen, so entspricht dies einer Vertauschung von Zeilen.
+
 
 +
*Die Aufgabe gehört zum Kapitel  [[Kanalcodierung/Allgemeine_Beschreibung_linearer_Blockcodes|"Allgemeine Beschreibung linearer Blockcodes"]].
 +
 
 +
*Bezug genommen wird insbesondere auf die Seiten  [[Kanalcodierung/Allgemeine_Beschreibung_linearer_Blockcodes#Systematische_Codes|"Systematische Codes"]]  sowie  [[Kanalcodierung/Allgemeine_Beschreibung_linearer_Blockcodes#Identische_Codes|"Identische Codes"]].
 +
 
 +
*Anzumerken ist,  dass die Angabe einer Prüfmatrix  $\boldsymbol{\rm H}$  nicht eindeutig ist.  Verändert man die Reihenfolge der Gleichungen,  entspricht dies der Vertauschung von Zeilen.
 +
 
 +
 
  
 
===Fragebogen===
 
===Fragebogen===
Zeile 38: Zeile 42:
 
{Welche der nachfolgend aufgeführten Codes sind systematisch?
 
{Welche der nachfolgend aufgeführten Codes sind systematisch?
 
|type="[]"}
 
|type="[]"}
+ Code A,
+
+ Code  $\rm A$,
- Code B,
+
- Code  $\rm B$,
+ Code C,
+
+ Code  $\rm C$,
+ Code D.
+
+ Code  $\rm D$.
  
 
{Welche der vorgegebenen Codepaare sind identisch?
 
{Welche der vorgegebenen Codepaare sind identisch?
 
|type="[]"}
 
|type="[]"}
 
 
+ Code A und Code B,
+
+ Code  $\rm A$  und  Code  $\rm B$,
-Code B und Code C,
+
- Code  $\rm B$  und  Code  $\rm C$,
-Code C und Code D.
+
- Code  $\rm C$  und  Code  $\rm D$.
  
  
{Welche der gegebenen Codepaare sind äquivalent, aber nicht identisch?
+
{Welche der gegebenen Codepaare sind äquivalent,  aber nicht identisch?
 
|type="[]"}
 
|type="[]"}
- Code A und Code B,
+
- Code  $\rm A$  und  Code  $\rm B$,
+ Code B und Code C,
+
+ Code  $\rm B$  und  Code  $\rm C$,
- Code C und Code D.
+
- Code  $\rm C$  und  Code  $\rm D$.
  
{Wie unterscheiden sich die Generatormatrizen $G_{\rm B}$ und $G_{\ rm C}$?
+
{Wie unterscheiden sich die Generatormatrizen  $G_{\rm B}$  und  $G_{\rm C}$?
 
|type="[]"}
 
|type="[]"}
-Durch verschiedene Linearkombinationen verschiedener Zeilen.
+
- Durch verschiedene Linearkombinationen verschiedener Zeilen.
- Durch zyklische Vertauschung der Zeilen um 1 nach unten.
+
- Durch zyklische Vertauschung der Zeilen um  $1$  nach unten.
+  Durch zyklische Vertauschung der Spalten um 1 nach rechts.
+
+  Durch zyklische Vertauschung der Spalten um  $1$  nach rechts.
  
  
{Bei welchen Codes gilt ${ \boldsymbol{\rm H}} · { \boldsymbol{\rm G}}^{\rm T} = \boldsymbol{0}$?
+
{Bei welchen Codes gilt  ${ \boldsymbol{\rm H}} \cdot { \boldsymbol{\rm G}}^{\rm T} = \boldsymbol{0}$?
 
|type="[]"}
 
|type="[]"}
+ Code A,
+
+ Code  $\rm A$,
+ Code B,
+
+ Code  $\rm B$,
+ Code C,
+
+ Code  $\rm C$,
+ Code D.
+
+ Code  $\rm D$.
 +
 
  
  
Zeile 78: Zeile 83:
 
===Musterlösung===
 
===Musterlösung===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''  ür einen systematischen (6, 3)–Blockcode muss gelten
+
'''(1)'''&nbsp; Richtig sind die&nbsp; <u>Antworten  1, 3 und 4</u>:
 +
*Für einen systematischen&nbsp; $(6, 3)$–Blockcode muss gelten:
  
 
:$$\underline{x} = ( x_1, x_2, x_3, x_4, x_5, x_6) = ( u_1, u_2, u_3, p_1, p_2, p_{3}) \hspace{0.05cm}.$$
 
:$$\underline{x} = ( x_1, x_2, x_3, x_4, x_5, x_6) = ( u_1, u_2, u_3, p_1, p_2, p_{3}) \hspace{0.05cm}.$$
  
Diese Bedingung erfüllen die Codes A, C und D <u>Antwort 1, 2, 4</u>.
+
*Diese Bedingung erfüllen Code&nbsp; $\rm A$,&nbsp; Code&nbsp; $\rm C$&nbsp; und&nbsp; Code&nbsp; $\rm D$,&nbsp; nicht aber Code&nbsp; $\rm B$.
 +
 
 +
 
 +
 
 +
'''(2)'''&nbsp; Richtig ist nur&nbsp; <u>Antwort 1</u>:
 +
*Nur&nbsp; Code&nbsp; $\rm A$&nbsp; und&nbsp; Code&nbsp; $\rm B$&nbsp; sind identische Codes.&nbsp; Sie beinhalten genau die gleichen Codeworte und unterscheiden sich nur durch andere Zuordnungen&nbsp; $\underline{u} \rightarrow \underline{x}$.
 +
 +
*Wie in der Musterlösung zur&nbsp; [[Aufgaben:1.08_Identische_Codes|"Aufgabe A1.8 (3)"]] angegeben,&nbsp; gelangt man von der Generatormatrix&nbsp; ${ \boldsymbol{\rm G}}_{\rm B}$&nbsp;  zur&nbsp; Generatormatrix ${ \boldsymbol{\rm G}}_{\rm A}$ 
 +
:*allein durch Vertauschen/Permutieren von Zeilen,&nbsp; oder
 +
:*durch Ersetzen einer Zeile durch die Linearkombination zwischen dieser Zeile und einer anderen.
 +
 
 +
 
 +
 
 +
'''(3)'''&nbsp; Richtig ist somit allein&nbsp; <u>Antwort 2</u>:
 +
*Code&nbsp; $\rm A$&nbsp; und&nbsp; Code&nbsp; $\rm B$&nbsp; sind mehr als äquivalent,&nbsp; nämlich identisch.
 +
 
 +
*Code&nbsp; $\rm C$&nbsp; und&nbsp; Code&nbsp; $\rm D$&nbsp; unterscheiden sich durch die minimale Hamming–Distanz&nbsp; $d_{\rm min} = 3$&nbsp; bzw.&nbsp; $d_{\rm min} = 2$&nbsp; und sind somit auch nicht äquivalent.
 +
 
 +
*Code&nbsp; $\rm B$&nbsp; und&nbsp; Code&nbsp; $\rm C$&nbsp;  zeigen dagegen  gleiche Eigenschaften,&nbsp; beispielsweise gilt für beide&nbsp; $d_{\rm min} = 3$.&nbsp; Sie beinhalten aber andere Codeworte.
 +
 
  
'''(2)'''&nbsp; Nur Code A und Code B sind identische Codes ⇒ <u>Antwort 1</u>. Sie beinhalten genau die gleichen Codeworte und unterscheiden sich nur durch andere Zuordnungen $\underline{u} → \underline{x}$. Wie in der Musterlösung zur [[Aufgaben:1.08_Identische_Codes|Aufgabe A1.08 (3)]] angegeben, gelangt man von der Generatormatrix ${ \boldsymbol{\rm G}}_{\rm B}$  zur Generatormatrix ${ \boldsymbol{\rm G}}_{\rm A}$  allein durch Vertauschen/Permutieren von Zeilen oder durch Ersetzen einer Zeile durch die Linearkombination zwischen dieser Zeile und einer anderen.
 
  
'''(3)'''&nbsp; Code A und Code B sind mehr als äquivalent, nämlich identisch. Code C und D unterscheiden sich zum Beispiel auch durch die minimale Hamming–Distanz $d_{\rm min} = 3$ bzw. $d_{\rm min} = 2$ und sind somit auch nicht äquivalent.
 
  
Richtig ist somit allein <u>Antwort 2</u>. Code B und Code C haben gleiche Eigenschaften, beispielsweise gilt für beide $d_{\rm min} = 3$. Sie beinhalten aber andere Codeworte.
+
'''(4)'''&nbsp; Richtig ist&nbsp; <u>Antwort 3</u>:
  
'''(4)'''&nbsp; Richtig ist <u>Antwort 3</u>:
+
*Die letzte Spalte von&nbsp; ${ \boldsymbol{\rm G}}_{\rm B}$&nbsp; ergibt die erste Spalte von&nbsp; ${ \boldsymbol{\rm G}}_{\rm C}$.
 +
*Die erste Spalte von&nbsp; ${ \boldsymbol{\rm G}}_{\rm B}$&nbsp; ergibt die zweite Spalte von&nbsp; ${ \boldsymbol{\rm G}}_{\rm C}$.
 +
*Die zweite Spalte von&nbsp; ${ \boldsymbol{\rm G}}_{\rm B}$&nbsp; ergibt die dritte Spalte von&nbsp; ${ \boldsymbol{\rm G}}_{\rm C}$,&nbsp; usw.
  
*Die letzte Spalte von ${ \boldsymbol{\rm G}}_{\rm B}$ ergibt die erste Spalte von ${ \boldsymbol{\rm G}}_{\rm C}$.
 
*Die erste Spalte von ${ \boldsymbol{\rm G}}_{\rm B}$ ergibt die zweite Spalte von ${ \boldsymbol{\rm G}}_{\rm C}$.
 
*Die zweite Spalte von ${ \boldsymbol{\rm G}}_{\rm B}$ ergibt die dritte Spalte von ${ \boldsymbol{\rm G}}_{\rm C}$, usw.
 
  
  
'''(5)'''&nbsp; Die Bedingung ${ \boldsymbol{\rm H}} · { \boldsymbol{\rm G}}^{\rm T} = \boldsymbol{0}$ gilt für alle linearen Codes ⇒ <u>Alle Aussagen treffen zu</u>.
+
'''(5)'''&nbsp; Alle Aussagen treffen zu</u>:
 +
*Die Bedingung&nbsp; ${ \boldsymbol{\rm H}} \cdot { \boldsymbol{\rm G}}^{\rm T} = \boldsymbol{0}$&nbsp; gilt für alle linearen Codes.
  
 
{{ML-Fuß}}
 
{{ML-Fuß}}
Zeile 103: Zeile 126:
  
  
[[Category:Aufgaben zu  Kanalcodierung|^1.4 Allgemeine Beschreibung linearer Blockcodes
+
[[Category:Aufgaben zu  Kanalcodierung|^1.4 Beschreibung linearer Blockcodes
  
 
^]]
 
^]]

Aktuelle Version vom 11. Juli 2022, 13:09 Uhr

Vier  $(6, 3)$–Blockcodes

In der Grafik sind die Zuordnungen  $\underline{u} \rightarrow \underline{x}$  für verschiedene Codes angegeben,  die im Folgenden jeweils durch die Generatormatrix  $\boldsymbol{\rm G}$  und die Prüfmatrix  $\boldsymbol{\rm H}$  charakterisiert werden:

  • ${\boldsymbol{\rm Code \ A}}$:
$${ \boldsymbol{\rm G}}_{\rm A} = \begin{pmatrix} 1 &0 &0 &1 &1 &0\\ 0 &1 &0 &1 &0 &1\\ 0 &0 &1 &0 &1 &1 \end{pmatrix} \hspace{0.05cm},\hspace{0.5cm}{ \boldsymbol{\rm H}}_{\rm A} = \begin{pmatrix} 1 &1 &0 &1 &0 &0\\ 1 &0 &1 &0 &1 &0\\ 0 &1 &1 &0 &0 &1 \end{pmatrix} \hspace{0.05cm}.$$
  • ${\boldsymbol{\rm Code \ B}}$:
$${ \boldsymbol{\rm G}}_{\rm B} = \begin{pmatrix} 0 &0 &1 &0 &1 &1\\ 1 &0 &0 &1 &1 &0\\ 0 &1 &1 &1 &1 &0 \end{pmatrix} \hspace{0.05cm},\hspace{0.5cm} { \boldsymbol{\rm H}}_{\rm B} = \begin{pmatrix} 1 &0 &1 &0 &1 &0\\ 1 &1 &0 &1 &0 &0\\ 0 &1 &1 &0 &0 &1 \end{pmatrix} \hspace{0.05cm}.$$
  • ${\boldsymbol{\rm Code \ C}}$:
$${ \boldsymbol{\rm G}}_{\rm C} = \begin{pmatrix} 1 &0 &0 &1 &0 &1\\ 0 &1 &0 &0 &1 &1\\ 0 &0 &1 &1 &1 &1 \end{pmatrix} \hspace{0.05cm},\hspace{0.5cm}{ \boldsymbol{\rm H}}_{\rm C} = \begin{pmatrix} 1 &0 &1 &1 &0 &0\\ 0 &1 &1 &0 &1 &0\\ 1 &1 &1 &0 &0 &1 \end{pmatrix} \hspace{0.05cm},$$
  • ${\boldsymbol{\rm Code \ D}}$:
$${ \boldsymbol{\rm G}}_{\rm D} = \begin{pmatrix} 1 &0 &0 &1 &0 &1\\ 0 &1 &0 &1 &0 &0\\ 0 &0 &1 &0 &1 &0 \end{pmatrix} \hspace{0.05cm},\hspace{0.5cm}{ \boldsymbol{\rm H}}_{\rm D} = \begin{pmatrix} 1 &1 &0 &1 &0 &0\\ 0 &0 &1 &0 &1 &0\\ 1 &0 &0 &0 &0 &1 \end{pmatrix} \hspace{0.05cm}.$$

In dieser Aufgabe soll untersucht werden,  welche dieser Codes bzw. Codepaare

  • systematisch sind,
  • identisch sind  (das heißt:   Verschiedene Codes haben gleiche Codeworte),
  • äquivalent sind  (das heißt:   Verschiedene Codes haben gleiche Codeparameter).


Hinweise:

  • Anzumerken ist,  dass die Angabe einer Prüfmatrix  $\boldsymbol{\rm H}$  nicht eindeutig ist.  Verändert man die Reihenfolge der Gleichungen,  entspricht dies der Vertauschung von Zeilen.


Fragebogen

1

Welche der nachfolgend aufgeführten Codes sind systematisch?

Code  $\rm A$,
Code  $\rm B$,
Code  $\rm C$,
Code  $\rm D$.

2

Welche der vorgegebenen Codepaare sind identisch?

Code  $\rm A$  und  Code  $\rm B$,
Code  $\rm B$  und  Code  $\rm C$,
Code  $\rm C$  und  Code  $\rm D$.

3

Welche der gegebenen Codepaare sind äquivalent,  aber nicht identisch?

Code  $\rm A$  und  Code  $\rm B$,
Code  $\rm B$  und  Code  $\rm C$,
Code  $\rm C$  und  Code  $\rm D$.

4

Wie unterscheiden sich die Generatormatrizen  $G_{\rm B}$  und  $G_{\rm C}$?

Durch verschiedene Linearkombinationen verschiedener Zeilen.
Durch zyklische Vertauschung der Zeilen um  $1$  nach unten.
Durch zyklische Vertauschung der Spalten um  $1$  nach rechts.

5

Bei welchen Codes gilt  ${ \boldsymbol{\rm H}} \cdot { \boldsymbol{\rm G}}^{\rm T} = \boldsymbol{0}$?

Code  $\rm A$,
Code  $\rm B$,
Code  $\rm C$,
Code  $\rm D$.


Musterlösung

(1)  Richtig sind die  Antworten 1, 3 und 4:

  • Für einen systematischen  $(6, 3)$–Blockcode muss gelten:
$$\underline{x} = ( x_1, x_2, x_3, x_4, x_5, x_6) = ( u_1, u_2, u_3, p_1, p_2, p_{3}) \hspace{0.05cm}.$$
  • Diese Bedingung erfüllen Code  $\rm A$,  Code  $\rm C$  und  Code  $\rm D$,  nicht aber Code  $\rm B$.


(2)  Richtig ist nur  Antwort 1:

  • Nur  Code  $\rm A$  und  Code  $\rm B$  sind identische Codes.  Sie beinhalten genau die gleichen Codeworte und unterscheiden sich nur durch andere Zuordnungen  $\underline{u} \rightarrow \underline{x}$.
  • Wie in der Musterlösung zur  "Aufgabe A1.8 (3)" angegeben,  gelangt man von der Generatormatrix  ${ \boldsymbol{\rm G}}_{\rm B}$  zur  Generatormatrix ${ \boldsymbol{\rm G}}_{\rm A}$
  • allein durch Vertauschen/Permutieren von Zeilen,  oder
  • durch Ersetzen einer Zeile durch die Linearkombination zwischen dieser Zeile und einer anderen.


(3)  Richtig ist somit allein  Antwort 2:

  • Code  $\rm A$  und  Code  $\rm B$  sind mehr als äquivalent,  nämlich identisch.
  • Code  $\rm C$  und  Code  $\rm D$  unterscheiden sich durch die minimale Hamming–Distanz  $d_{\rm min} = 3$  bzw.  $d_{\rm min} = 2$  und sind somit auch nicht äquivalent.
  • Code  $\rm B$  und  Code  $\rm C$  zeigen dagegen gleiche Eigenschaften,  beispielsweise gilt für beide  $d_{\rm min} = 3$.  Sie beinhalten aber andere Codeworte.



(4)  Richtig ist  Antwort 3:

  • Die letzte Spalte von  ${ \boldsymbol{\rm G}}_{\rm B}$  ergibt die erste Spalte von  ${ \boldsymbol{\rm G}}_{\rm C}$.
  • Die erste Spalte von  ${ \boldsymbol{\rm G}}_{\rm B}$  ergibt die zweite Spalte von  ${ \boldsymbol{\rm G}}_{\rm C}$.
  • Die zweite Spalte von  ${ \boldsymbol{\rm G}}_{\rm B}$  ergibt die dritte Spalte von  ${ \boldsymbol{\rm G}}_{\rm C}$,  usw.


(5)  Alle Aussagen treffen zu:

  • Die Bedingung  ${ \boldsymbol{\rm H}} \cdot { \boldsymbol{\rm G}}^{\rm T} = \boldsymbol{0}$  gilt für alle linearen Codes.