Aufgaben:Aufgabe 5.5: Fehlerfolge und Fehlerabstandsfolge: Unterschied zwischen den Versionen
(5 dazwischenliegende Versionen von 2 Benutzern werden nicht angezeigt) | |||
Zeile 2: | Zeile 2: | ||
[[Datei:P_ID1834__Dig_A_5_5.png|right|frame|Fehlerfolge (oben, blau) und Fehlerabstandsfolge (unten, rot)]] | [[Datei:P_ID1834__Dig_A_5_5.png|right|frame|Fehlerfolge (oben, blau) und Fehlerabstandsfolge (unten, rot)]] | ||
− | Eine jede Fehlerfolge $〈e_{\nu}〉$ kann man auch als die Folge $〈a_n〉$ der Fehlerabstände angeben. Ist die mittlere Fehlerwahrscheinlichkeit nicht zu groß, dann ergibt sich so ein geringerer Speicherbedarf als bei Speicherung der Fehlerfolge. Für den Vergleich in dieser Aufgabe soll von den folgenden Voraussetzungen ausgegangen werden: | + | Eine jede Fehlerfolge $〈e_{\nu}〉$ kann man auch als die Folge $〈a_n〉$ der Fehlerabstände angeben. Ist die mittlere Fehlerwahrscheinlichkeit nicht zu groß, dann ergibt sich so ein geringerer Speicherbedarf als bei Speicherung der Fehlerfolge. Für den Vergleich in dieser Aufgabe soll von den folgenden Voraussetzungen ausgegangen werden: |
− | * Abgespeichert werden soll jeweils eine Fehlerfolge | + | * Abgespeichert werden soll jeweils eine Fehlerfolge der Länge $N = 10^6$ Elementen. |
− | * Für die Speicherung von $〈e_{\nu}〉$ soll die speichereffizienteste Methode ( | + | * Für die Speicherung von $〈e_{\nu}〉$ soll die speichereffizienteste Methode (ein Bit pro Fehler) verwendet werden. |
* Jeder Fehlerabstand wird durch 4 Byte (32 Bit) dargestellt. | * Jeder Fehlerabstand wird durch 4 Byte (32 Bit) dargestellt. | ||
− | Ist das zugrundeliegende Kanalmodell erneuernd wie zum Beispiel das BSC–Modell, so können zur Generierung der Fehlerfolge $〈e_{\nu}〉$ auf einem Digitalrechner zwei unterschiedliche Methoden angewandt werden: | + | Ist das zugrundeliegende Kanalmodell erneuernd wie zum Beispiel das BSC–Modell, so können zur Generierung der Fehlerfolge $〈e_{\nu}〉$ auf einem Digitalrechner zwei unterschiedliche Methoden angewandt werden: |
− | * die symbolweise Erzeugung der Fehler, beim BSC–Modell gemäß den Wahrscheinlichkeiten $p$ (Fehler) und $1& | + | * die symbolweise Erzeugung der Fehler, beim BSC–Modell gemäß den Wahrscheinlichkeiten $p$ (Fehler) und $1-p$ (kein Fehler), |
− | * die Erzeugung der Fehlerabstände, beim BSC–Modell entsprechend der [[Stochastische_Signaltheorie/Binomialverteilung| Binomialverteilung]]. | + | * die Erzeugung der Fehlerabstände, beim BSC–Modell entsprechend der [[Stochastische_Signaltheorie/Binomialverteilung| Binomialverteilung]]. |
+ | |||
+ | |||
+ | |||
''Hinweise:'' | ''Hinweise:'' | ||
− | * Die Aufgabe gehört zum Themengebiet des Kapitels [[Digitalsignal%C3%BCbertragung/Binary_Symmetric_Channel_(BSC)| Binary Symmetric Channel (BSC)]]. | + | * Die Aufgabe gehört zum Themengebiet des Kapitels [[Digitalsignal%C3%BCbertragung/Binary_Symmetric_Channel_(BSC)| Binary Symmetric Channel (BSC)]]. |
− | * Bei den folgenden Fragen gibt $G_e$ die erforderliche Dateigröße (in Byte) zur Abspeicherung der Fehlerfolge $〈e_{\nu}〉$ und $G_a$ (ebenfalls in Byte) die Dateigröße bei Abspeicherung der | + | * Bei den folgenden Fragen gibt $G_e$ die erforderliche Dateigröße (in Byte) zur Abspeicherung der Fehlerfolge $〈e_{\nu}〉$ und $G_a$ (ebenfalls in Byte) die Dateigröße bei Abspeicherung der Fehlerabstandsfolge $〈a_n〉$ an. |
− | + | ||
Zeile 23: | Zeile 26: | ||
===Fragebogen=== | ===Fragebogen=== | ||
<quiz display=simple> | <quiz display=simple> | ||
− | {Wieviel Speicherplatz (in Byte) wird benötigt, wenn man eine Fehlerfolge der Länge $N = 10^6$ direkt abspeichert? | + | {Wieviel Speicherplatz (in Byte) wird benötigt, wenn man eine Fehlerfolge der Länge $N = 10^6$ direkt abspeichert? |
|type="{}"} | |type="{}"} | ||
− | $G_e \ = \ ${ | + | $G_e \ = \ ${ 125 3% } $\ \rm kByte$ |
− | {Wie groß wird die Dateigröße in etwa bei Speicherung der Fehlerabstände? Es gelte $p_{\rm M} = 10^{-3}$. | + | {Wie groß wird die Dateigröße in etwa bei Speicherung der Fehlerabstände? Es gelte $p_{\rm M} = 10^{-3}$. |
|type="{}"} | |type="{}"} | ||
− | $ | + | $G_a \ = \ ${ 4 3% } $\ \rm kByte$ |
− | {Wie groß wird die Datei bei Speicherung der Fehlerabstände mit $p_{\rm M} = 0.5$? | + | {Wie groß wird die Datei bei Speicherung der Fehlerabstände mit $p_{\rm M} = 0.5$? |
|type="{}"} | |type="{}"} | ||
− | $ | + | $G_a \ = \ ${ 2000 3% } $\ \rm kByte$ |
− | {Geben Sie die Grenze $p_{\rm M, \ max}$ der BSC–Fehlerwahrscheinlichkeit an, bei der die Speicherung als Fehlerabstandsfolge sinnvoll ist. | + | {Geben Sie die Grenze $p_{\rm M, \ max}$ der BSC–Fehlerwahrscheinlichkeit an, bei der die Speicherung als Fehlerabstandsfolge sinnvoll ist. |
|type="{}"} | |type="{}"} | ||
$p_{\rm M, \ max} \ = \ ${ 3.125 3% } $\ \% $ | $p_{\rm M, \ max} \ = \ ${ 3.125 3% } $\ \% $ | ||
Zeile 42: | Zeile 45: | ||
===Musterlösung=== | ===Musterlösung=== | ||
{{ML-Kopf}} | {{ML-Kopf}} | ||
− | '''(1)''' Pro Element $e_{\nu}$ der Fehlerfolge benötigt man genau ein $\rm Bit$. Die Multiplikation mit $N$ ergibt $10^6 \ \rm Bit$ entsprechend $G_e \ \underline {= | + | '''(1)''' Pro Element $e_{\nu}$ der Fehlerfolge benötigt man genau ein $\rm Bit$. |
+ | *Die Multiplikation mit $N$ ergibt $10^6 \ \rm Bit$ entsprechend $G_e \ \underline {= 125 \ \rm kByte}$. | ||
+ | |||
+ | |||
+ | |||
+ | '''(2)''' Mit $N = 10^6$ und $p_{\rm M} = 10^{–3}$ sind ca. $1000$ Fehlerabstände abzuspeichern, jeder einzelne mit $4 \ \rm Byte$ ⇒ $G_a \ \underline {= 4 \rm kByte}$. | ||
+ | *Im Gegensatz zur Speicherung der Fehlerfolge wird dieser Wert leicht variieren, da in einer Fehlerfolge der (begrenzten) Länge $N = 10^6$ nicht immer exakt $1000$ Fehler auftreten werden. | ||
− | |||
+ | '''(3)''' Nun werden im Mittel $0.5 \cdot 10^6$ Fehler auftreten ⇒ $G_a \ \underline {= 2000 \ \rm KByte}$. | ||
+ | *Daraus ist ersichtlich, dass die Speicherung der Fehlerabstände nur sinnvoll ist, wenn die (mittlere) Fehlerwahrscheinlichkeit nicht zu groß ist. | ||
− | |||
Zeile 54: | Zeile 63: | ||
:$$N \cdot p_{\rm M} \cdot 4 < {N}/{8} \Rightarrow | :$$N \cdot p_{\rm M} \cdot 4 < {N}/{8} \Rightarrow | ||
\hspace{0.3cm}p_{\rm M, \hspace{0.05cm}max} = {1}/{32} \hspace{0.15cm}\underline {= | \hspace{0.3cm}p_{\rm M, \hspace{0.05cm}max} = {1}/{32} \hspace{0.15cm}\underline {= | ||
− | + | 3.125\%}\hspace{0.05cm}.$$ | |
− | Dieses Ergebnis ist unabhängig von der Folgenlänge $N$. | + | *Dieses Ergebnis ist unabhängig von der Folgenlänge $N$. |
{{ML-Fuß}} | {{ML-Fuß}} | ||
[[Category:Aufgaben zu Digitalsignalübertragung|^5.2 Binary Symmetric Channel (BSC)^]] | [[Category:Aufgaben zu Digitalsignalübertragung|^5.2 Binary Symmetric Channel (BSC)^]] |
Aktuelle Version vom 25. März 2019, 15:59 Uhr
Eine jede Fehlerfolge $〈e_{\nu}〉$ kann man auch als die Folge $〈a_n〉$ der Fehlerabstände angeben. Ist die mittlere Fehlerwahrscheinlichkeit nicht zu groß, dann ergibt sich so ein geringerer Speicherbedarf als bei Speicherung der Fehlerfolge. Für den Vergleich in dieser Aufgabe soll von den folgenden Voraussetzungen ausgegangen werden:
- Abgespeichert werden soll jeweils eine Fehlerfolge der Länge $N = 10^6$ Elementen.
- Für die Speicherung von $〈e_{\nu}〉$ soll die speichereffizienteste Methode (ein Bit pro Fehler) verwendet werden.
- Jeder Fehlerabstand wird durch 4 Byte (32 Bit) dargestellt.
Ist das zugrundeliegende Kanalmodell erneuernd wie zum Beispiel das BSC–Modell, so können zur Generierung der Fehlerfolge $〈e_{\nu}〉$ auf einem Digitalrechner zwei unterschiedliche Methoden angewandt werden:
- die symbolweise Erzeugung der Fehler, beim BSC–Modell gemäß den Wahrscheinlichkeiten $p$ (Fehler) und $1-p$ (kein Fehler),
- die Erzeugung der Fehlerabstände, beim BSC–Modell entsprechend der Binomialverteilung.
Hinweise:
- Die Aufgabe gehört zum Themengebiet des Kapitels Binary Symmetric Channel (BSC).
- Bei den folgenden Fragen gibt $G_e$ die erforderliche Dateigröße (in Byte) zur Abspeicherung der Fehlerfolge $〈e_{\nu}〉$ und $G_a$ (ebenfalls in Byte) die Dateigröße bei Abspeicherung der Fehlerabstandsfolge $〈a_n〉$ an.
Fragebogen
Musterlösung
- Die Multiplikation mit $N$ ergibt $10^6 \ \rm Bit$ entsprechend $G_e \ \underline {= 125 \ \rm kByte}$.
(2) Mit $N = 10^6$ und $p_{\rm M} = 10^{–3}$ sind ca. $1000$ Fehlerabstände abzuspeichern, jeder einzelne mit $4 \ \rm Byte$ ⇒ $G_a \ \underline {= 4 \rm kByte}$.
- Im Gegensatz zur Speicherung der Fehlerfolge wird dieser Wert leicht variieren, da in einer Fehlerfolge der (begrenzten) Länge $N = 10^6$ nicht immer exakt $1000$ Fehler auftreten werden.
(3) Nun werden im Mittel $0.5 \cdot 10^6$ Fehler auftreten ⇒ $G_a \ \underline {= 2000 \ \rm KByte}$.
- Daraus ist ersichtlich, dass die Speicherung der Fehlerabstände nur sinnvoll ist, wenn die (mittlere) Fehlerwahrscheinlichkeit nicht zu groß ist.
(4) Aus den Erklärungen zu den oberen Teilaufgaben folgt:
- $$N \cdot p_{\rm M} \cdot 4 < {N}/{8} \Rightarrow \hspace{0.3cm}p_{\rm M, \hspace{0.05cm}max} = {1}/{32} \hspace{0.15cm}\underline {= 3.125\%}\hspace{0.05cm}.$$
- Dieses Ergebnis ist unabhängig von der Folgenlänge $N$.