Aufgaben:Aufgabe 4.09: Zykloergodizität: Unterschied zwischen den Versionen
Aus LNTwww
(8 dazwischenliegende Versionen von 2 Benutzern werden nicht angezeigt) | |||
Zeile 3: | Zeile 3: | ||
}} | }} | ||
− | [[Datei:P_ID379__Sto_A_4_9.png|right|Zur Verdeutlichung der Zykloergodizität]] | + | [[Datei:P_ID379__Sto_A_4_9.png|right|frame|Zur Verdeutlichung der Eigenschaft „Zykloergodizität”]] |
− | Wir betrachten zwei unterschiedliche Zufallsprozesse, deren Musterfunktionen harmonische Schwingungen mit jeweils gleicher Frequenz $f_0 = 1/T_0$ sind. $T_0$ bezeichnet die Periodendauer. | + | Wir betrachten zwei unterschiedliche Zufallsprozesse, deren Musterfunktionen harmonische Schwingungen mit jeweils gleicher Frequenz $f_0 = 1/T_0$ sind. $T_0$ bezeichnet die Periodendauer. |
− | *Beim oben dargestellten Zufallsprozess $\{x_i(t)\}$ ist | + | *Beim oben dargestellten Zufallsprozess $\{x_i(t)\}$ ist die stochastische Komponente die Amplitude, wobei der Zufallsparameter $C_i$ alle Werte zwischen $1\hspace{0.05cm}\rm V$ und $2\hspace{0.05cm}\rm V$ mit gleicher Wahrscheinlichkeit annehmen kann: |
− | :$$\{ x_i(t) \} = \{ C_i \cdot \ | + | :$$\{ x_i(t) \} = \{ C_i \cdot \cos (2 \pi f_{\rm 0} t)\}. $$ |
− | *Beim Prozess $\{y_i(t)\}$ weisen alle Musterfunktionen die gleiche Amplitude auf: $x_0 = 2\hspace{0.05cm}\rm V$. Hier variiert die Phase $\varphi_i$, die gleichverteilt zwischen $0$ und $2\pi$ ist: | + | *Beim Prozess $\{y_i(t)\}$ weisen alle Musterfunktionen die gleiche Amplitude auf: $x_0 = 2\hspace{0.05cm}\rm V$. Hier variiert die Phase $\varphi_i$, die über alle Musterfunktionen gemittelt gleichverteilt zwischen $0$ und $2\pi$ ist: |
− | :$$\{ y_i(t) \} = \{ x_{\rm 0} \cdot \ | + | :$$\{ y_i(t) \} = \{ x_{\rm 0} \cdot \cos (2 \pi f_{\rm 0} t - \varphi_i)\}. $$ |
− | Die Eigenschaften | + | Die Eigenschaften „zyklostationär” und „zykloergodisch” sagen aus, |
*dass die Prozesse zwar im strengen Sinne nicht als stationär und ergodisch zu bezeichnen sind, | *dass die Prozesse zwar im strengen Sinne nicht als stationär und ergodisch zu bezeichnen sind, | ||
− | * | + | *alle statistischen Kennwerte aber für Vielfache der Periondauer $T_0$ jeweils gleich sind. |
− | In diesen Fällen sind auch die meisten der Berechnungsregeln, die eigentlich nur für ergodische Prozesse gelten | + | In diesen Fällen sind auch die meisten der Berechnungsregeln anwendbar, die eigentlich nur für ergodische Prozesse gelten. |
− | '' | + | |
− | + | '''Hinweis:''' Die Aufgabe gehört zum Kapitel [[Stochastische_Signaltheorie/Autokorrelationsfunktion_(AKF)|Autokorrelationsfunktion]]. | |
− | + | ||
Zeile 28: | Zeile 28: | ||
<quiz display=simple> | <quiz display=simple> | ||
− | {Welche der | + | {Welche der folgenden Aussagen sind zutreffend? |
|type="[]"} | |type="[]"} | ||
− | - Der Prozess $\{x_i(t)\}$ ist stationär. | + | - Der Prozess $\{x_i(t)\}$ ist stationär. |
− | - Der Prozess $\{x_i(t)\}$ ist ergodisch. | + | - Der Prozess $\{x_i(t)\}$ ist ergodisch. |
− | + Der Prozess $\{y_i(t)\}$ ist stationär. | + | + Der Prozess $\{y_i(t)\}$ ist stationär. |
− | + Der Prozess $\{y_i(t)\}$ ist ergodisch. | + | + Der Prozess $\{y_i(t)\}$ ist ergodisch. |
− | {Berechnen Sie die Autokorrelationsfunktion $\ | + | {Berechnen Sie die Autokorrelationsfunktion $\varphi_y(\tau)$ für verschiedene $\tau$-Werte. |
|type="{}"} | |type="{}"} | ||
− | $\varphi_y(\tau=0)\ = $ { 2 3% } $\ \rm V^2$ | + | $\varphi_y(\tau=0)\ = \ $ { 2 3% } $\ \rm V^2$ |
− | $\varphi_y(\tau=0.25 \cdot T_0)\ = $ { 0. } $\ \rm V^2$ | + | $\varphi_y(\tau=0.25 \cdot T_0)\ = \ $ { 0. } $\ \rm V^2$ |
− | $\varphi_y(\tau=1.50 \cdot T_0)\ = $ { -2.06--1.94 }$\ \rm V^2$ | + | $\varphi_y(\tau=1.50 \cdot T_0)\ = \ $ { -2.06--1.94 }$\ \rm V^2$ |
− | {Welche der folgenden Aussagen sind bezüglich $\{y_i(t)\}$ zutreffend? | + | {Welche der folgenden Aussagen sind bezüglich $\{y_i(t)\}$ zutreffend? |
|type="[]"} | |type="[]"} | ||
+ Alle Mustersignale sind gleichsignalfrei. | + Alle Mustersignale sind gleichsignalfrei. | ||
− | + | + Alle Mustersignale besitzen den Effektivwert $2\hspace{0.05cm}\rm V$. | |
− | - Die AKF hat die doppelte Periodendauer $(2T_0)$ wie die Mustersignale $(T_0)$. | + | - Die AKF hat die doppelte Periodendauer $(2T_0)$ wie die Mustersignale $(T_0)$. |
Zeile 55: | Zeile 55: | ||
===Musterlösung=== | ===Musterlösung=== | ||
{{ML-Kopf}} | {{ML-Kopf}} | ||
− | '''(1)''' Richtig sind <u>die Lösungsvorschläge 3 und 4</u>: | + | '''(1)''' Richtig sind die <u>die Lösungsvorschläge 3 und 4</u>: |
− | *Zum Zeitpunkt $t = 0$ (und allen Vielfachen der Periodendauer $T_0$ | + | *Zum Zeitpunkt $t = 0$ $($und allen Vielfachen der Periodendauer $T_0)$ hat jedes Mustersignal $x_i(t)$ einen Wert zwischen $1\hspace{0.05cm}\rm V$ und $2\hspace{0.05cm}\rm V$. Der Mittelwert ist $1.5\hspace{0.05cm}\rm V$. |
− | *Dagegen ist bei $t = T_0/4$ der Signalwert des gesamten Ensembles identisch | + | *Dagegen ist bei $t = T_0/4$ der Signalwert des gesamten Ensembles identisch Null. Das heißt: <br> Bereits der lineare Mittelwert erfüllt die Bedingung der Stationarität nicht: Der Prozess $\{x_i(t)\}$ ist nicht stationär und kann deshalb auch nicht ergodisch sein. |
− | *Dagegen sind beim Prozess $\{y_i(t)\}$ aufgrund der gleichverteilten Phase zu allen Zeitpunkten die gleichen Momente zu erwarten ⇒ der Prozess ist stationär. | + | *Dagegen sind beim Prozess $\{y_i(t)\}$ aufgrund der gleichverteilten Phase zu allen Zeitpunkten die gleichen Momente zu erwarten ⇒ der Prozess ist stationär. |
− | *Da bei der AKF-Berechnung die Phasenbeziehungen verloren gehen, steht jede einzelne Musterfunktion stellvertretend für den gesamten Prozess. Deshalb kann hier hypothetisch von Ergodizität ausgegangen werden. Am Ende der Aufgabe ist zu überprüfen, ob diese Annahme gerechtfertigt ist. | + | *Da bei der AKF-Berechnung die Phasenbeziehungen verloren gehen, steht jede einzelne Musterfunktion stellvertretend für den gesamten Prozess. Deshalb kann hier hypothetisch von Ergodizität ausgegangen werden. |
+ | *Am Ende der Aufgabe ist zu überprüfen, ob diese Annahme gerechtfertigt ist. | ||
− | '''(2)''' Aufgrund der Ergodizität kann jede Musterfunktion zur AKF | + | |
+ | |||
+ | '''(2)''' Aufgrund der Ergodizität kann jede Musterfunktion zur AKF–Berechung herangezogen werden. Wir benutzen hier willkürlich die Phase $\varphi_i = 0$. | ||
+ | *Aufgrund der Periodizität genügt die Mitteilung über nur eine Periodendauer $T_0$. Dann gilt: | ||
:$$\varphi_y (\tau) = \frac{1}{T_0} \cdot \int_0^{T_0} y(t) \cdot y (t+\tau) \hspace{0.1cm}{\rm d} t = \frac{{ x}_0^2}{{ T}_0} \cdot \int_0^{{\it T}_0} \cos (2 \pi {f_{\rm 0} t}) \cdot \cos (2 \pi {f_{\rm 0} (t+\tau)}) \hspace{0.1cm}\rm d \it t.$$ | :$$\varphi_y (\tau) = \frac{1}{T_0} \cdot \int_0^{T_0} y(t) \cdot y (t+\tau) \hspace{0.1cm}{\rm d} t = \frac{{ x}_0^2}{{ T}_0} \cdot \int_0^{{\it T}_0} \cos (2 \pi {f_{\rm 0} t}) \cdot \cos (2 \pi {f_{\rm 0} (t+\tau)}) \hspace{0.1cm}\rm d \it t.$$ | ||
− | Mit der trigonometrischen Beziehung | + | *Mit der trigonometrischen Beziehung $\cos (\alpha) \cdot \cos (\beta)= {1}/{2} \cdot \cos (\alpha + \beta) + {1}/{2} \cdot \cos (\alpha - \beta)$ folgt daraus weiter: |
− | + | :$$\varphi_y (\tau) = \rm \frac{{\it x}_0^2}{{2 \it T}_0} \cdot \int_0^{{\it T}_0} \rm cos (4 \pi \it{f_{\rm 0} t} + {\rm 2} \pi \it{f_{\rm 0} \tau}{\rm )} \hspace{0.1cm}\rm d \it t \ {\rm +} \ \rm \frac{{\it x}_0^2}{{2 \it T}_0} \cdot \int_0^{{\it T}_0} \rm cos (-2 \pi \it{f_{\rm 0} \tau}{\rm )} \hspace{0.1cm}\rm d \it t. $$ | |
− | folgt | + | *Das erste Integral ist Null (Integration über zwei Perioden der Cosinusfunktion). Der zweite Integrand ist unabhängig von der Integrationsvariablen $t$. Daraus folgt: |
− | :$$\varphi_y (\tau) = | + | :$$\varphi_y (\tau) ={{ x}_0^2}/{\rm 2} \cdot \cos (2 \pi {f_{\rm 0} \tau}). $$ |
+ | *Für die angegebenen Zeitpunkte gilt mit $x_0 = 2\hspace{0.05cm}\rm V$: | ||
+ | :$$\varphi_y (0)\hspace{0.15cm}\underline{ = 2\hspace{0.05cm}{\rm V}^2}, \hspace{0.5cm} \varphi_y (0.25 \cdot { T}_{\rm 0}{\rm )} \hspace{0.15cm}\underline{ = 0}, \hspace{0.5cm} \varphi_y (\rm 1.5 \cdot {\it T}_{\rm 0} {\rm )} \hspace{0.15cm}\underline{= \rm -2\hspace{0.05cm}{\rm V}^2}.$$ | ||
− | |||
− | |||
− | '''(3)''' Richtig | + | '''(3)''' Richtig sind die <u>beiden ersten Lösungsvorschläge</u>: |
− | *Der Mittelwert $m_y$ kann aus dem Grenzwert der AKF für $\tau \to \infty$ ermittelt werden, wenn man die periodischen Anteile ausschließt. Daraus folgt $m_y= 0$. | + | *Der Mittelwert $m_y$ kann aus dem Grenzwert der AKF für $\tau \to \infty$ ermittelt werden, wenn man die periodischen Anteile ausschließt. Daraus folgt $m_y= 0$. |
− | *Die Varianz (Leistung) ist gleich dem AKF | + | *Die Varianz (Leistung) ist gleich dem AKF–Wert an der Stelle $\tau = 0$ ⇒ $\sigma_y^2=2\hspace{0.05cm}\rm V^2$. Der Effektivwert ist die Quadratwurzel daraus: $\sigma_y \approx 1.414\hspace{0.05cm}\rm V$. |
− | *Die Periodendauer eines periodischen Zufallsprozesses bleibt in der AKF erhalten, das heißt, auch die Periodendauer der AKF beträgt $T_0$. | + | *Die Periodendauer eines periodischen Zufallsprozesses bleibt in der AKF erhalten, das heißt, auch die Periodendauer der AKF beträgt $T_0$. |
{{ML-Fuß}} | {{ML-Fuß}} | ||
Aktuelle Version vom 19. März 2022, 17:14 Uhr
Wir betrachten zwei unterschiedliche Zufallsprozesse, deren Musterfunktionen harmonische Schwingungen mit jeweils gleicher Frequenz $f_0 = 1/T_0$ sind. $T_0$ bezeichnet die Periodendauer.
- Beim oben dargestellten Zufallsprozess $\{x_i(t)\}$ ist die stochastische Komponente die Amplitude, wobei der Zufallsparameter $C_i$ alle Werte zwischen $1\hspace{0.05cm}\rm V$ und $2\hspace{0.05cm}\rm V$ mit gleicher Wahrscheinlichkeit annehmen kann:
- $$\{ x_i(t) \} = \{ C_i \cdot \cos (2 \pi f_{\rm 0} t)\}. $$
- Beim Prozess $\{y_i(t)\}$ weisen alle Musterfunktionen die gleiche Amplitude auf: $x_0 = 2\hspace{0.05cm}\rm V$. Hier variiert die Phase $\varphi_i$, die über alle Musterfunktionen gemittelt gleichverteilt zwischen $0$ und $2\pi$ ist:
- $$\{ y_i(t) \} = \{ x_{\rm 0} \cdot \cos (2 \pi f_{\rm 0} t - \varphi_i)\}. $$
Die Eigenschaften „zyklostationär” und „zykloergodisch” sagen aus,
- dass die Prozesse zwar im strengen Sinne nicht als stationär und ergodisch zu bezeichnen sind,
- alle statistischen Kennwerte aber für Vielfache der Periondauer $T_0$ jeweils gleich sind.
In diesen Fällen sind auch die meisten der Berechnungsregeln anwendbar, die eigentlich nur für ergodische Prozesse gelten.
Hinweis: Die Aufgabe gehört zum Kapitel Autokorrelationsfunktion.
Fragebogen
Musterlösung
(1) Richtig sind die die Lösungsvorschläge 3 und 4:
- Zum Zeitpunkt $t = 0$ $($und allen Vielfachen der Periodendauer $T_0)$ hat jedes Mustersignal $x_i(t)$ einen Wert zwischen $1\hspace{0.05cm}\rm V$ und $2\hspace{0.05cm}\rm V$. Der Mittelwert ist $1.5\hspace{0.05cm}\rm V$.
- Dagegen ist bei $t = T_0/4$ der Signalwert des gesamten Ensembles identisch Null. Das heißt:
Bereits der lineare Mittelwert erfüllt die Bedingung der Stationarität nicht: Der Prozess $\{x_i(t)\}$ ist nicht stationär und kann deshalb auch nicht ergodisch sein. - Dagegen sind beim Prozess $\{y_i(t)\}$ aufgrund der gleichverteilten Phase zu allen Zeitpunkten die gleichen Momente zu erwarten ⇒ der Prozess ist stationär.
- Da bei der AKF-Berechnung die Phasenbeziehungen verloren gehen, steht jede einzelne Musterfunktion stellvertretend für den gesamten Prozess. Deshalb kann hier hypothetisch von Ergodizität ausgegangen werden.
- Am Ende der Aufgabe ist zu überprüfen, ob diese Annahme gerechtfertigt ist.
(2) Aufgrund der Ergodizität kann jede Musterfunktion zur AKF–Berechung herangezogen werden. Wir benutzen hier willkürlich die Phase $\varphi_i = 0$.
- Aufgrund der Periodizität genügt die Mitteilung über nur eine Periodendauer $T_0$. Dann gilt:
- $$\varphi_y (\tau) = \frac{1}{T_0} \cdot \int_0^{T_0} y(t) \cdot y (t+\tau) \hspace{0.1cm}{\rm d} t = \frac{{ x}_0^2}{{ T}_0} \cdot \int_0^{{\it T}_0} \cos (2 \pi {f_{\rm 0} t}) \cdot \cos (2 \pi {f_{\rm 0} (t+\tau)}) \hspace{0.1cm}\rm d \it t.$$
- Mit der trigonometrischen Beziehung $\cos (\alpha) \cdot \cos (\beta)= {1}/{2} \cdot \cos (\alpha + \beta) + {1}/{2} \cdot \cos (\alpha - \beta)$ folgt daraus weiter:
- $$\varphi_y (\tau) = \rm \frac{{\it x}_0^2}{{2 \it T}_0} \cdot \int_0^{{\it T}_0} \rm cos (4 \pi \it{f_{\rm 0} t} + {\rm 2} \pi \it{f_{\rm 0} \tau}{\rm )} \hspace{0.1cm}\rm d \it t \ {\rm +} \ \rm \frac{{\it x}_0^2}{{2 \it T}_0} \cdot \int_0^{{\it T}_0} \rm cos (-2 \pi \it{f_{\rm 0} \tau}{\rm )} \hspace{0.1cm}\rm d \it t. $$
- Das erste Integral ist Null (Integration über zwei Perioden der Cosinusfunktion). Der zweite Integrand ist unabhängig von der Integrationsvariablen $t$. Daraus folgt:
- $$\varphi_y (\tau) ={{ x}_0^2}/{\rm 2} \cdot \cos (2 \pi {f_{\rm 0} \tau}). $$
- Für die angegebenen Zeitpunkte gilt mit $x_0 = 2\hspace{0.05cm}\rm V$:
- $$\varphi_y (0)\hspace{0.15cm}\underline{ = 2\hspace{0.05cm}{\rm V}^2}, \hspace{0.5cm} \varphi_y (0.25 \cdot { T}_{\rm 0}{\rm )} \hspace{0.15cm}\underline{ = 0}, \hspace{0.5cm} \varphi_y (\rm 1.5 \cdot {\it T}_{\rm 0} {\rm )} \hspace{0.15cm}\underline{= \rm -2\hspace{0.05cm}{\rm V}^2}.$$
(3) Richtig sind die beiden ersten Lösungsvorschläge:
- Der Mittelwert $m_y$ kann aus dem Grenzwert der AKF für $\tau \to \infty$ ermittelt werden, wenn man die periodischen Anteile ausschließt. Daraus folgt $m_y= 0$.
- Die Varianz (Leistung) ist gleich dem AKF–Wert an der Stelle $\tau = 0$ ⇒ $\sigma_y^2=2\hspace{0.05cm}\rm V^2$. Der Effektivwert ist die Quadratwurzel daraus: $\sigma_y \approx 1.414\hspace{0.05cm}\rm V$.
- Die Periodendauer eines periodischen Zufallsprozesses bleibt in der AKF erhalten, das heißt, auch die Periodendauer der AKF beträgt $T_0$.