Aufgaben:Aufgabe 1.08Z: Äquivalente Codes: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
Zeile 5: Zeile 5:
 
[[Datei:P_ID2394__KC_Z_1_8.png|right|frame|Vier  $(6, 3)$–Blockcodes]]
 
[[Datei:P_ID2394__KC_Z_1_8.png|right|frame|Vier  $(6, 3)$–Blockcodes]]
  
In der Grafik sind die Zuordnungen  $\underline{u} \rightarrow \underline{x}$  für verschiedene Codes angegeben, die im Folgenden jeweils durch die Generatormatrix  $\boldsymbol{\rm G}$  und die Prüfmatrix  $\boldsymbol{\rm H}$  charakterisiert werden:
+
In der Grafik sind die Zuordnungen  $\underline{u} \rightarrow \underline{x}$  für verschiedene Codes angegeben,  die im Folgenden jeweils durch die Generatormatrix  $\boldsymbol{\rm G}$  und die Prüfmatrix  $\boldsymbol{\rm H}$  charakterisiert werden:
  
 
*${\boldsymbol{\rm Code \ A}}$:
 
*${\boldsymbol{\rm Code \ A}}$:
Zeile 19: Zeile 19:
 
:$${ \boldsymbol{\rm G}}_{\rm D} = \begin{pmatrix} 1 &0 &0 &1 &0 &1\\ 0 &1 &0 &1 &0 &0\\ 0 &0 &1 &0 &1 &0 \end{pmatrix} \hspace{0.05cm},\hspace{0.5cm}{ \boldsymbol{\rm H}}_{\rm D} = \begin{pmatrix} 1 &1 &0 &1 &0 &0\\ 0 &0 &1 &0 &1 &0\\ 1 &0 &0 &0 &0 &1 \end{pmatrix} \hspace{0.05cm}.$$
 
:$${ \boldsymbol{\rm G}}_{\rm D} = \begin{pmatrix} 1 &0 &0 &1 &0 &1\\ 0 &1 &0 &1 &0 &0\\ 0 &0 &1 &0 &1 &0 \end{pmatrix} \hspace{0.05cm},\hspace{0.5cm}{ \boldsymbol{\rm H}}_{\rm D} = \begin{pmatrix} 1 &1 &0 &1 &0 &0\\ 0 &0 &1 &0 &1 &0\\ 1 &0 &0 &0 &0 &1 \end{pmatrix} \hspace{0.05cm}.$$
  
In dieser Aufgabe soll untersucht werden, welche dieser Codes bzw. Codepaare
+
In dieser Aufgabe soll untersucht werden,  welche dieser Codes bzw. Codepaare
  
 
*systematisch sind,
 
*systematisch sind,
Zeile 27: Zeile 27:
  
  
 +
Hinweise:
  
 +
*Die Aufgabe gehört zum Kapitel  [[Kanalcodierung/Allgemeine_Beschreibung_linearer_Blockcodes|"Allgemeine Beschreibung linearer Blockcodes"]].
  
 +
*Bezug genommen wird insbesondere auf die Seiten  [[Kanalcodierung/Allgemeine_Beschreibung_linearer_Blockcodes#Systematische_Codes|"Systematische Codes"]]  sowie  [[Kanalcodierung/Allgemeine_Beschreibung_linearer_Blockcodes#Identische_Codes|"Identische Codes"]].
  
''Hinweise'' :
+
*Anzumerken ist,  dass die Angabe einer Prüfmatrix  $\boldsymbol{\rm H}$  nicht eindeutig ist.  Verändert man die Reihenfolge der Gleichungen,  entspricht dies der Vertauschung von Zeilen.
 
 
*Die Aufgabe gehört zum Kapitel  [[Kanalcodierung/Allgemeine_Beschreibung_linearer_Blockcodes|Allgemeine Beschreibung linearer Blockcodes]].
 
*Bezug genommen wird insbesondere auf die Seiten  [[Kanalcodierung/Allgemeine_Beschreibung_linearer_Blockcodes#Systematische_Codes|Systematische Codes]]  sowie  [[Kanalcodierung/Allgemeine_Beschreibung_linearer_Blockcodes#Identische_Codes|Identische Codes]].
 
*Anzumerken ist, dass die Angabe einer Prüfmatrix  $\boldsymbol{\rm H}$  nicht eindeutig ist.  
 
*Verändert man die Reihenfolge der Prüfgleichungen, so entspricht dies einer Vertauschung von Zeilen.
 
  
  
Zeile 52: Zeile 50:
 
|type="[]"}
 
|type="[]"}
 
 
+ Code  $\rm A$  und Code  $\rm B$,
+
+ Code  $\rm A$  und  Code  $\rm B$,
- Code  $\rm B$  und Code  $\rm C$,
+
- Code  $\rm B$  und  Code  $\rm C$,
- Code  $\rm C$  und Code  $\rm D$.
+
- Code  $\rm C$  und  Code  $\rm D$.
  
  
{Welche der gegebenen Codepaare sind äquivalent, aber nicht identisch?
+
{Welche der gegebenen Codepaare sind äquivalent,  aber nicht identisch?
 
|type="[]"}
 
|type="[]"}
- Code  $\rm A$  und Code  $\rm B$,
+
- Code  $\rm A$  und  Code  $\rm B$,
+ Code  $\rm B$  und Code  $\rm C$,
+
+ Code  $\rm B$  und  Code  $\rm C$,
- Code  $\rm C$  und Code  $\rm D$.
+
- Code  $\rm C$  und  Code  $\rm D$.
  
 
{Wie unterscheiden sich die Generatormatrizen  $G_{\rm B}$  und  $G_{\rm C}$?
 
{Wie unterscheiden sich die Generatormatrizen  $G_{\rm B}$  und  $G_{\rm C}$?

Version vom 11. Juli 2022, 12:57 Uhr

Vier  $(6, 3)$–Blockcodes

In der Grafik sind die Zuordnungen  $\underline{u} \rightarrow \underline{x}$  für verschiedene Codes angegeben,  die im Folgenden jeweils durch die Generatormatrix  $\boldsymbol{\rm G}$  und die Prüfmatrix  $\boldsymbol{\rm H}$  charakterisiert werden:

  • ${\boldsymbol{\rm Code \ A}}$:
$${ \boldsymbol{\rm G}}_{\rm A} = \begin{pmatrix} 1 &0 &0 &1 &1 &0\\ 0 &1 &0 &1 &0 &1\\ 0 &0 &1 &0 &1 &1 \end{pmatrix} \hspace{0.05cm},\hspace{0.5cm}{ \boldsymbol{\rm H}}_{\rm A} = \begin{pmatrix} 1 &1 &0 &1 &0 &0\\ 1 &0 &1 &0 &1 &0\\ 0 &1 &1 &0 &0 &1 \end{pmatrix} \hspace{0.05cm}.$$
  • ${\boldsymbol{\rm Code \ B}}$:
$${ \boldsymbol{\rm G}}_{\rm B} = \begin{pmatrix} 0 &0 &1 &0 &1 &1\\ 1 &0 &0 &1 &1 &0\\ 0 &1 &1 &1 &1 &0 \end{pmatrix} \hspace{0.05cm},\hspace{0.5cm} { \boldsymbol{\rm H}}_{\rm B} = \begin{pmatrix} 1 &0 &1 &0 &1 &0\\ 1 &1 &0 &1 &0 &0\\ 0 &1 &1 &0 &0 &1 \end{pmatrix} \hspace{0.05cm}.$$
  • ${\boldsymbol{\rm Code \ C}}$:
$${ \boldsymbol{\rm G}}_{\rm C} = \begin{pmatrix} 1 &0 &0 &1 &0 &1\\ 0 &1 &0 &0 &1 &1\\ 0 &0 &1 &1 &1 &1 \end{pmatrix} \hspace{0.05cm},\hspace{0.5cm}{ \boldsymbol{\rm H}}_{\rm C} = \begin{pmatrix} 1 &0 &1 &1 &0 &0\\ 0 &1 &1 &0 &1 &0\\ 1 &1 &1 &0 &0 &1 \end{pmatrix} \hspace{0.05cm},$$
  • ${\boldsymbol{\rm Code \ D}}$:
$${ \boldsymbol{\rm G}}_{\rm D} = \begin{pmatrix} 1 &0 &0 &1 &0 &1\\ 0 &1 &0 &1 &0 &0\\ 0 &0 &1 &0 &1 &0 \end{pmatrix} \hspace{0.05cm},\hspace{0.5cm}{ \boldsymbol{\rm H}}_{\rm D} = \begin{pmatrix} 1 &1 &0 &1 &0 &0\\ 0 &0 &1 &0 &1 &0\\ 1 &0 &0 &0 &0 &1 \end{pmatrix} \hspace{0.05cm}.$$

In dieser Aufgabe soll untersucht werden,  welche dieser Codes bzw. Codepaare

  • systematisch sind,
  • identisch sind  (das heißt:   Verschiedene Codes haben gleiche Codeworte),
  • äquivalent sind  (das heißt:   Verschiedene Codes haben gleiche Codeparameter).


Hinweise:

  • Anzumerken ist,  dass die Angabe einer Prüfmatrix  $\boldsymbol{\rm H}$  nicht eindeutig ist.  Verändert man die Reihenfolge der Gleichungen,  entspricht dies der Vertauschung von Zeilen.


Fragebogen

1

Welche der nachfolgend aufgeführten Codes sind systematisch?

Code  $\rm A$,
Code  $\rm B$,
Code  $\rm C$,
Code  $\rm D$.

2

Welche der vorgegebenen Codepaare sind identisch?

Code  $\rm A$  und  Code  $\rm B$,
Code  $\rm B$  und  Code  $\rm C$,
Code  $\rm C$  und  Code  $\rm D$.

3

Welche der gegebenen Codepaare sind äquivalent,  aber nicht identisch?

Code  $\rm A$  und  Code  $\rm B$,
Code  $\rm B$  und  Code  $\rm C$,
Code  $\rm C$  und  Code  $\rm D$.

4

Wie unterscheiden sich die Generatormatrizen  $G_{\rm B}$  und  $G_{\rm C}$?

Durch verschiedene Linearkombinationen verschiedener Zeilen.
Durch zyklische Vertauschung der Zeilen um  $1$  nach unten.
Durch zyklische Vertauschung der Spalten um  $1$  nach rechts.

5

Bei welchen Codes gilt  ${ \boldsymbol{\rm H}} \cdot { \boldsymbol{\rm G}}^{\rm T} = \boldsymbol{0}$?

Code  $\rm A$,
Code  $\rm B$,
Code  $\rm C$,
Code  $\rm D$.


Musterlösung

(1)  Richtig sind die Antworten 1, 3 und 4:

  • Für einen systematischen (6, 3)–Blockcode muss gelten:
$$\underline{x} = ( x_1, x_2, x_3, x_4, x_5, x_6) = ( u_1, u_2, u_3, p_1, p_2, p_{3}) \hspace{0.05cm}.$$

Diese Bedingung erfüllen Code A, Code C und Code D, nicht aber Code B.


(2)  Richtig ist nur Antwort 1:

  • Nur Code A und Code B sind identische Codes. Sie beinhalten genau die gleichen Codeworte und unterscheiden sich nur durch andere Zuordnungen $\underline{u} \rightarrow \underline{x}$.
  • Wie in der Musterlösung zur Aufgabe A1.8 (3) angegeben, gelangt man von der Generatormatrix ${ \boldsymbol{\rm G}}_{\rm B}$ zur Generatormatrix ${ \boldsymbol{\rm G}}_{\rm A}$
  • allein durch Vertauschen/Permutieren von Zeilen, oder
  • durch Ersetzen einer Zeile durch die Linearkombination zwischen dieser Zeile und einer anderen.


(3)  Richtig ist somit allein Antwort 2:

  • Code A und Code B sind mehr als äquivalent, nämlich identisch.
  • Code C und D unterscheiden sich zum Beispiel auch durch die minimale Hamming–Distanz $d_{\rm min} = 3$ bzw. $d_{\rm min} = 2$ und sind somit auch nicht äquivalent.
  • Code B und Code C zeigen dagegen gleiche Eigenschaften, beispielsweise gilt für beide $d_{\rm min} = 3$. Sie beinhalten aber andere Codeworte.



(4)  Richtig ist Antwort 3:

  • Die letzte Spalte von ${ \boldsymbol{\rm G}}_{\rm B}$ ergibt die erste Spalte von ${ \boldsymbol{\rm G}}_{\rm C}$.
  • Die erste Spalte von ${ \boldsymbol{\rm G}}_{\rm B}$ ergibt die zweite Spalte von ${ \boldsymbol{\rm G}}_{\rm C}$.
  • Die zweite Spalte von ${ \boldsymbol{\rm G}}_{\rm B}$ ergibt die dritte Spalte von ${ \boldsymbol{\rm G}}_{\rm C}$, usw.


(5)  Alle Aussagen treffen zu:

  • Die Bedingung ${ \boldsymbol{\rm H}} \cdot { \boldsymbol{\rm G}}^{\rm T} = \boldsymbol{0}$ gilt für alle linearen Codes.