Aufgaben:Aufgabe 2.9: Symmetrische Verzerrungen: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
 
Zeile 10: Zeile 10:
  
  
Die obere Grafik zeigt das Spektrum  $S_{\rm TP}(f)$  des äquivalenten TP–Signals in schematischer Form.  Das bedeutet,  dass die Längen der gezeichneten Diraclinien nicht den tatsächlichen Werten von  $A_{\rm T}$,  $A_1/2$  und  $A_2/2$  entsprechen.
+
Die obere Grafik zeigt das Spektrum  $S_{\rm TP}(f)$  des äquivalenten Tiefpass–Signals in schematischer Form.  Das bedeutet,  dass die Längen der gezeichneten Diraclinien nicht den tatsächlichen Werten von  $A_{\rm T}$,  $A_1/2$  und  $A_2/2$  entsprechen.
  
  

Aktuelle Version vom 16. Februar 2022, 16:34 Uhr

Sende– und Empfangsspektrum im äquivalenten Tiefpass-Bereich

Das aus zwei Anteilen zusammengesetzte Quellensignal

$$q(t) = A_1 \cdot \cos(2 \pi f_1 t ) + A_2 \cdot \cos(2 \pi f_2 t )$$

wird amplitudenmoduliert und über einen linear verzerrenden Übertragungskanal übertragen. 

  • Die Trägerfrequenz ist  $f_{\rm T}$  und der zugesetzte Gleichanteil  $A_{\rm T}$. 
  • Es liegt also eine  "Zweiseitenband-Amplitudenmoduluation  $\rm (ZSB–AM)$  mit Träger"  vor.


Die obere Grafik zeigt das Spektrum  $S_{\rm TP}(f)$  des äquivalenten Tiefpass–Signals in schematischer Form.  Das bedeutet,  dass die Längen der gezeichneten Diraclinien nicht den tatsächlichen Werten von  $A_{\rm T}$,  $A_1/2$  und  $A_2/2$  entsprechen.


Messtechnisch erfasst wurde die Spektralfunktion  $R(f)$  des Empfangssignals.  In der unteren Grafik sehen Sie das daraus berechnete äquivalente Tiefpass–Spektrum  $R_{\rm TP}(f)$.

Der Kanalfrequenzgang ist durch einige Stützwerte ausreichend genau beschrieben:

$$ H_{\rm K}(f = f_{\rm T}) = 0.5,$$
$$H_{\rm K}(f = f_{\rm T} \pm f_1) = 0.4,$$
$$ H_{\rm K}(f = f_{\rm T} \pm f_2) = 0.2 \hspace{0.05cm}.$$



Hinweise:


Fragebogen

1

Ermitteln Sie die Amplituden von Träger– und Quellensignal.

$A_{\rm T} \ = \hspace{0.17cm} $

$\ \rm V$
$A_1 \ = \ $

$\ \rm V$
$A_2 \ = \ $

$\ \rm V$

2

Zu welcher Art von Verzerrung hätte der Einsatz eines Hüllkurvendemodulators bei idealem Kanal   ⇒   $H_{\rm K}(f) = 1$  geführt?

Keine Verzerrungen.
Lineare Verzerrungen.
Nichtlineare Verzerrungen.

3

Berechnen Sie das äquivalente Tiefpass–Signal und beantworten Sie folgende Fragen.  Ist es zutreffend,  dass

$r_{\rm TP}(t)$  stets reell ist,
$r_{\rm TP}(t)$  stets größer oder gleich Null ist,
die Phasenfunktion  $ϕ(t)$  die Werte  $0^\circ$  und  $180^\circ$  annehmen kann?

4

Zu welchen Verzerrungen führt der Hüllkurvendemodulator beim betrachteten Übertragungskanal?

Keine Verzerrungen.
Lineare Verzerrungen.
Nichtlineare Verzerrungen.


Musterlösung

(1)  Anhand der Grafiken auf der Angabenseite sind folgende Aussagen möglich:

$${A_{\rm T}} \cdot 0.5 = 2 \,{\rm V}\hspace{0.3cm} \Rightarrow \hspace{0.3cm}A_{\rm T} \hspace{0.15cm}\underline {= 4 \,{\rm V}},$$
$${A_{\rm 1}}/{2} \cdot 0.4 = 0.6\,{\rm V}\hspace{0.3cm} \Rightarrow \hspace{0.3cm}A_{\rm 1} \hspace{0.15cm}\underline {= 3 \,{\rm V}},$$
$${A_{\rm 2}}/{2} \cdot 0.2 = 0.4\,{\rm V}\hspace{0.3cm} \Rightarrow \hspace{0.3cm}A_{\rm 2} \hspace{0.15cm}\underline {= 4 \,{\rm V}}\hspace{0.05cm}.$$


(2)  Richtig ist der  Lösungsvorschlag 3:

  • Der Modulationsgrad ergibt sich zu  $m = (A_1 + A_2)/A_T = 1.75$.
  • Damit ergeben sich bei Verwendung eines Hüllkurvendemodulators starke nichtlineare Verzerrungen.
  • Ein Klirrfaktor kann aber nicht angegeben werden,  da das Quellensignal zwei Frequenzanteile beinhaltet.



(3)  Richtig sind  die Aussagen 1 und 2:

  • Die Fourierrücktransformation von  $R_{\rm TP}(f)$  führt zum Ergebnis:
$$ r_{\rm TP}(t) = 2 \,{\rm V} + 1.2 \,{\rm V} \cdot \cos(2 \pi f_1 t ) + 0.8 \,{\rm V} \cdot \cos(2 \pi f_2 t )\hspace{0.05cm}.$$
  • Diese Funktion ist stets reell und nicht–negativ.
  • Damit gilt gleichzeitig  $ϕ(t) = 0$.  Dagegen ist  $ϕ(t) = 180^\circ$  nicht möglich.



(4)  Ein Vergleich der beiden Signale

$$q(t) = 3 \,{\rm V} \cdot \cos(2 \pi f_1 t ) + 4 \,{\rm V} \cdot \cos(2 \pi f_2 t ),$$
$$ v(t) = 0.4 \cdot 3 \,{\rm V} \cdot \cos(2 \pi f_1 t ) + 0.2 \cdot 4 \,{\rm V} \cdot \cos(2 \pi f_2 t )$$
zeigt, dass nun lineare Verzerrungen – genauer gesagt:  Dämpfungsverzerrungen – auftreten   ⇒   Lösungsvorschlag 2.
  • Der Kanal  $H_{\rm K}(f)$  hat hier den positiven Effekt,  dass anstelle von irreversiblen nichtlinearen Verzerrungen nun lineare Verzerrungen entstehen,  die durch ein nachgeschaltetes Filter eliminiert werden können.
  • Dies ist darauf zurückzuführen,  dass durch die stärkere Dämpfung des Quellensignals  $q(t)$  im Vergleich zum Trägersignal  $z(t)$  der Modulationsgrad herabgesetzt wird von  $m = 1.75$  auf 
$$m = (0.4 · 3 \ \rm V + 0.2 · 4 \ \rm V)/(0.5 · 4 \ \rm V) = 1.$$