Aufgaben:Aufgabe 4.4: Zeigerdiagramm bei ZSB-AM: Unterschied zwischen den Versionen
(Eine dazwischenliegende Version desselben Benutzers wird nicht angezeigt) | |||
Zeile 28: | Zeile 28: | ||
− | In der Teilaufgabe '''(5)''' ist nach dem Betrag von $s_+(t)$ gefragt. Hierunter versteht man die Länge des resultierenden Zeigers. | + | In der Teilaufgabe '''(5)''' ist nach dem Betrag von $s_+(t)$ gefragt. Hierunter versteht man die Länge des resultierenden Zeigers. |
Zeile 46: | Zeile 46: | ||
<quiz display=simple> | <quiz display=simple> | ||
− | {Wie lautet das analytische Signal $s_+(t)$. Wie groß ist dieses zur Zeit $t = 0$? | + | {Wie lautet das analytische Signal $s_+(t)$. Wie groß ist dieses zur Zeit $t = 0$? |
|type="{}"} | |type="{}"} | ||
$\text{Re}[s_+(t=0)]\ = \ $ { 1.8 3% } $\text{V}$ | $\text{Re}[s_+(t=0)]\ = \ $ { 1.8 3% } $\text{V}$ | ||
Zeile 68: | Zeile 68: | ||
$\text{Im}[s_+(t=20 \ {\rm µ} \text{s})]\ = \ $ { 0. } $\text{V}$ | $\text{Im}[s_+(t=20 \ {\rm µ} \text{s})]\ = \ $ { 0. } $\text{V}$ | ||
− | {Wie groß ist die kleinstmögliche Zeigerlänge? Zu welchem Zeitpunkt $t_{\text{min}}$ tritt dieser Wert zum ersten Mal auf? | + | {Wie groß ist die kleinstmögliche Zeigerlänge? Zu welchem Zeitpunkt $t_{\text{min}}$ tritt dieser Wert zum ersten Mal auf? |
|type="{}"} | |type="{}"} | ||
$|s_+(t)|_{\text{min}}\ = \ $ { 0.2 3% } $\text{V}$ | $|s_+(t)|_{\text{min}}\ = \ $ { 0.2 3% } $\text{V}$ | ||
Zeile 90: | Zeile 90: | ||
Der Ausdruck beschreibt die Summe dreier Zeiger, die mit unterschiedlichen Winkelgeschwindigkeiten drehen. | Der Ausdruck beschreibt die Summe dreier Zeiger, die mit unterschiedlichen Winkelgeschwindigkeiten drehen. | ||
*In obiger Gleichung bedeutet beispielsweise $\omega_{60} = 2\pi (f_{\rm T} + f_{\rm N}) = 2\pi \cdot 60 \ \text{kHz}$. | *In obiger Gleichung bedeutet beispielsweise $\omega_{60} = 2\pi (f_{\rm T} + f_{\rm N}) = 2\pi \cdot 60 \ \text{kHz}$. | ||
− | *Zum Zeitpunkt $t = 0$ zeigen alle drei Zeiger in Richtung der reellen Achse (siehe linke Grafik). | + | *Zum Zeitpunkt $t = 0$ zeigen alle drei Zeiger in Richtung der reellen Achse (siehe linke Grafik). |
*Man erhält den <u>rein reellen</u> Wert $s_+(t = 0) \;\underline{= 1.8 \ \text{V}}$. | *Man erhält den <u>rein reellen</u> Wert $s_+(t = 0) \;\underline{= 1.8 \ \text{V}}$. | ||
− | [[Datei:P_ID728__Sig_A_4_4_ML.png| | + | [[Datei:P_ID728__Sig_A_4_4_ML.png|right|frame|Drei verschiedene analytische Signale]] |
<br clear=all> | <br clear=all> | ||
− | '''(2)''' Die <u>erste Aussage</u> ist richtig und ergibt sich aus der [[Signaldarstellung/Analytisches_Signal_und_zugehörige_Spektralfunktion#Darstellung_mit_der_Hilberttransformation|Hilbert-Transformation]]. Dagegen stimmen die nächsten beiden Aussagen nicht: | + | '''(2)''' Die <u>erste Aussage</u> ist richtig und ergibt sich aus der [[Signaldarstellung/Analytisches_Signal_und_zugehörige_Spektralfunktion#Darstellung_mit_der_Hilberttransformation|Hilbert-Transformation]]. Dagegen stimmen die nächsten beiden Aussagen nicht: |
*$s_+(t)$ ist stets eine komplexe Zeitfunktion mit Ausnahme des Grenzfalls $s(t) = 0$. | *$s_+(t)$ ist stets eine komplexe Zeitfunktion mit Ausnahme des Grenzfalls $s(t) = 0$. | ||
*Jede komplexe Funktion hat jedoch zu einigen Zeitpunkten auch rein reelle Werte. | *Jede komplexe Funktion hat jedoch zu einigen Zeitpunkten auch rein reelle Werte. | ||
Zeile 130: | Zeile 130: | ||
− | '''(4)''' Nach einer Umdrehung des roten Trägers, also zum Zeitpunkt $t$ = $T_0 = 20 \ {\rm µ} \text{s}$ hat der blaue Zeiger bereits $72^{\circ}$ mehr zurückgelegt und der grüne Zeiger dementsprechend $72^{\circ}$ weniger. Die Summe der drei Zeiger ist wieder <u>rein reell</u> und ergibt entsprechend der rechten Grafik: | + | '''(4)''' Nach einer Umdrehung des roten Trägers, also zum Zeitpunkt $t$ = $T_0 = 20 \ {\rm µ} \text{s}$ hat der blaue Zeiger bereits $72^{\circ}$ mehr zurückgelegt und der grüne Zeiger dementsprechend $72^{\circ}$ weniger. Die Summe der drei Zeiger ist wieder <u>rein reell</u> und ergibt entsprechend der rechten Grafik: |
:$${\rm Re}\left[s_{+}({\rm 20 \hspace{0.05cm} {\rm µ} s})\right] = | :$${\rm Re}\left[s_{+}({\rm 20 \hspace{0.05cm} {\rm µ} s})\right] = | ||
Zeile 142: | Zeile 142: | ||
0.4 \hspace{0.05cm} V} \hspace{0.15 cm}\underline{= {\rm 0.2 \hspace{0.05cm} V}}.$$ | 0.4 \hspace{0.05cm} V} \hspace{0.15 cm}\underline{= {\rm 0.2 \hspace{0.05cm} V}}.$$ | ||
− | Innerhalb einer Periode $T_0$ des Trägers tritt gegenüber den Zeigern der beiden Seitenbändern ein Phasenversatz von $\pm72^{\circ}$ auf. Daraus folgt: | + | Innerhalb einer Periode $T_0$ des Trägers tritt gegenüber den Zeigern der beiden Seitenbändern ein Phasenversatz von $\pm72^{\circ}$ auf. Daraus folgt: |
:$$t_{\text{min}} = 180^{\circ}/72^{\circ} \cdot T_0 = 2.5 \cdot T_0 \;\underline{= 50 \ {\rm µ} \text{s}}.$$ | :$$t_{\text{min}} = 180^{\circ}/72^{\circ} \cdot T_0 = 2.5 \cdot T_0 \;\underline{= 50 \ {\rm µ} \text{s}}.$$ | ||
{{ML-Fuß}} | {{ML-Fuß}} |
Aktuelle Version vom 7. Mai 2021, 14:38 Uhr
Wir gehen aus von einem cosinusförmigen Quellensignal $q(t)$ mit
- der Amplitude $A_{\rm N} = 0.8 \ \text{V}$ und
- der Frequenz $f_{\rm N}= 10 \ \text{kHz}$.
Die Frequenzumsetzung erfolgt mittels Zweiseitenband–Amplitudenmodulation mit Träger, abgekürzt ZSB–AM.
Das modulierte Signal $s(t)$ lautet mit dem (normierten) Träger $z(t) = \text{cos}(\omega_{\rm T} \cdot t)$ und dem Gleichanteil $q_0 = 1 \ \text{V}$:
- $$\begin{align*} s(t) & = \left(q_0 + q(t)\right) \cdot z(t)= \left({\rm 1 \hspace{0.05cm} V} + {\rm 0.8 \hspace{0.05cm}V}\cdot {\cos} ( \omega_{\rm N}\cdot t)\right) \cdot {\cos} ( \omega_{\rm T}\cdot t) = \\ & = q_0 \cdot {\cos} ( \omega_{\rm T}\cdot t) + {A_{\rm N}}/{2} \cdot {\cos} ( (\omega_{\rm T}+ \omega_{\rm N}) \cdot t) + {A_{\rm N}}/{2} \cdot {\cos} ( (\omega_{\rm T}- \omega_{\rm N}) \cdot t).\end{align*}$$
Der erste Term beschreibt den Träger, der zweite Term das sogenannte obere Seitenband (OSB) und der letzte Term das untere Seitenband (USB).
Die Skizze zeigt das Spektrum $S_+(f)$ des dazugehörigen analytischen Signals für $f_{\rm T} = 50 \ \text{kHz}$. Man erkennt
- den Träger (rot),
- das obere Seitenband (blau) und
- das untere Seitenband (grün).
In der Teilaufgabe (5) ist nach dem Betrag von $s_+(t)$ gefragt. Hierunter versteht man die Länge des resultierenden Zeigers.
Hinweise:
- Die Aufgabe gehört zum Kapitel Analytisches Signal und zugehörige Spektralfunktion.
- Sie können Ihre Lösung mit dem Interaktionsmodul Physikalisches Signal & Analytisches Signal überprüfen.
Fragebogen
Musterlösung
- $$s_{+}(t) = {\rm 1 \hspace{0.05cm} V} \cdot {\rm e}^{{\rm j}\hspace{0.05cm} \omega_{\rm 50}\hspace{0.05cm} t } + {\rm 0.4 \hspace{0.05cm} V} \cdot {\rm e}^{{\rm j}\hspace{0.05cm} \omega_{\rm 60} \hspace{0.05cm} t }+ {\rm 0.4 \hspace{0.05cm} V} \cdot {\rm e}^{{\rm j}\hspace{0.05cm} \omega_{\rm 40}\hspace{0.05cm} t }.$$
Der Ausdruck beschreibt die Summe dreier Zeiger, die mit unterschiedlichen Winkelgeschwindigkeiten drehen.
- In obiger Gleichung bedeutet beispielsweise $\omega_{60} = 2\pi (f_{\rm T} + f_{\rm N}) = 2\pi \cdot 60 \ \text{kHz}$.
- Zum Zeitpunkt $t = 0$ zeigen alle drei Zeiger in Richtung der reellen Achse (siehe linke Grafik).
- Man erhält den rein reellen Wert $s_+(t = 0) \;\underline{= 1.8 \ \text{V}}$.
(2) Die erste Aussage ist richtig und ergibt sich aus der Hilbert-Transformation. Dagegen stimmen die nächsten beiden Aussagen nicht:
- $s_+(t)$ ist stets eine komplexe Zeitfunktion mit Ausnahme des Grenzfalls $s(t) = 0$.
- Jede komplexe Funktion hat jedoch zu einigen Zeitpunkten auch rein reelle Werte.
- Der Zeigerverbund dreht immer in mathematisch positiver Richtung.
- Überschreitet der Summenvektor die reelle Achse, so verschwindet zu diesem Zeitpunkt der Imaginärteil und $s_+(t)$ ist rein reell.
(3) Die Periodendauer des Trägersignals beträgt $T_0 = 1/f_T = 20 \ {\rm µ} \text{s}$.
- Nach $t = 5 \ {\rm µ} \text{s}$ (siehe mittlere Grafik) hat sich der Träger somit um $90^{\circ}$ gedreht.
- Der blaue Zeiger (OSB) dreht um $20\%$ schneller, der grüne (USB) um $20\%$ langsamer als der rote Drehzeiger (Trägersignal):
- $$s_{+}({\rm 5 \hspace{0.05cm} {\rm µ} s}) = {\rm 1 \hspace{0.05cm} V} \cdot {\rm e}^{{\rm j}\hspace{0.05cm} 2 \pi \hspace{0.03cm} \cdot \hspace{0.08cm}50 \hspace{0.03cm} \cdot \hspace{0.08cm}0.005 } + {\rm 0.4 \hspace{0.05cm} V} \cdot {\rm e}^{{\rm j}\hspace{0.05cm} 2 \pi \hspace{0.03cm} \cdot \hspace{0.08cm}60 \hspace{0.03cm} \cdot \hspace{0.08cm}0.005 }+ {\rm 0.4 \hspace{0.05cm} V} \cdot {\rm e}^{{\rm j}\hspace{0.05cm} 2 \pi \hspace{0.03cm} \cdot \hspace{0.08cm}40 \hspace{0.03cm} \cdot \hspace{0.08cm}0.005 } = {\rm 1 \hspace{0.05cm} V} \cdot {\rm e}^{{\rm j}\hspace{0.05cm} 90^\circ }+ {\rm 0.4 \hspace{0.05cm} V} \cdot {\rm e}^{{\rm j}\hspace{0.05cm} 108^\circ }+{\rm 0.4 \hspace{0.05cm} V} \cdot {\rm e}^{{\rm j}\hspace{0.05cm} 72^\circ }.$$
- Somit sind die in $ 5 \ {\rm µ} \text{s}$ zurückgelegten Winkel von OSB und USB $108^{\circ}$ bzw. $72^{\circ}$.
- Da sich zu diesem Zeitpunkt die Realteile von OSB und USB kompensieren, ist $s_+(t=5 \ {\rm µ} \text{s})$ rein imaginär und man erhält:
- $${\rm Im}\left[s_{+}(t = {\rm 5 \hspace{0.05cm} {\rm µ} s})\right] = {\rm 1 \hspace{0.05cm} V} + 2 \cdot {\rm 0.4 \hspace{0.05cm} V}\cdot \cos (18^\circ ) \hspace{0.15 cm}\underline{= {\rm 1.761 \hspace{0.05cm} V}}.$$
(4) Nach einer Umdrehung des roten Trägers, also zum Zeitpunkt $t$ = $T_0 = 20 \ {\rm µ} \text{s}$ hat der blaue Zeiger bereits $72^{\circ}$ mehr zurückgelegt und der grüne Zeiger dementsprechend $72^{\circ}$ weniger. Die Summe der drei Zeiger ist wieder rein reell und ergibt entsprechend der rechten Grafik:
- $${\rm Re}\left[s_{+}({\rm 20 \hspace{0.05cm} {\rm µ} s})\right] = {\rm 1 \hspace{0.05cm} V} + 2 \cdot {\rm 0.4 \hspace{0.05cm} V}\cdot \cos (72^\circ ) \hspace{0.15 cm}\underline{= {\rm 1.236 \hspace{0.05cm} V}}.$$
(5) Der Betrag ist minimal, wenn die Zeiger der beiden Seitenbänder gegenüber dem Träger um $180^{\circ}$ versetzt sind. Daraus folgt:
- $$|s_{+}(t)|_{\rm min} = {\rm 1 \hspace{0.05cm} V} - 2 \cdot {\rm 0.4 \hspace{0.05cm} V} \hspace{0.15 cm}\underline{= {\rm 0.2 \hspace{0.05cm} V}}.$$
Innerhalb einer Periode $T_0$ des Trägers tritt gegenüber den Zeigern der beiden Seitenbändern ein Phasenversatz von $\pm72^{\circ}$ auf. Daraus folgt:
- $$t_{\text{min}} = 180^{\circ}/72^{\circ} \cdot T_0 = 2.5 \cdot T_0 \;\underline{= 50 \ {\rm µ} \text{s}}.$$