Aufgaben:Aufgabe 2.11: Hüllkurvendemodulation eines ESB-Signals: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
Zeile 84: Zeile 84:
 
===Musterlösung===
 
===Musterlösung===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''  Der Maximalwert $a_{\rm max} = 2\ \rm  V$ und der Minimalwert $a_{\rm min} = 0$ können aus der Grafik abgelesen oder über die angegebene Gleichung berechnet werden:
+
'''(1)'''  Der Maximalwert  $a_{\rm max} = 2\ \rm  V$  und der Minimalwert  $a_{\rm min} = 0$  können aus der Grafik abgelesen oder über die angegebene Gleichung berechnet werden:
 
:$$ a_{\rm max}  =  A_{\rm T} \cdot \sqrt{1+ \mu^2 + 2 \mu}= A_{\rm T} \cdot (1+ \mu) = 2\,{\rm V} \hspace{0.05cm},$$
 
:$$ a_{\rm max}  =  A_{\rm T} \cdot \sqrt{1+ \mu^2 + 2 \mu}= A_{\rm T} \cdot (1+ \mu) = 2\,{\rm V} \hspace{0.05cm},$$
 
:$$a_{\rm min}  =  A_{\rm T} \cdot \sqrt{1+ \mu^2 - 2 \mu}= A_{\rm T} \cdot (1- \mu) = 0 \hspace{0.05cm}.$$
 
:$$a_{\rm min}  =  A_{\rm T} \cdot \sqrt{1+ \mu^2 - 2 \mu}= A_{\rm T} \cdot (1- \mu) = 0 \hspace{0.05cm}.$$
Für die Extremwerte des Sinkensignals folgt daraus:
+
*Für die beiden Extremwerte des Sinkensignals folgt daraus:
 
:$$ v_{\rm max}  = 2 \cdot [a_{\rm max} - A_{\rm 0}] = 2 \cdot [2\,{\rm V} - 1.273\,{\rm V}] \hspace{0.15cm}\underline {=1.454\,{\rm V}}\hspace{0.05cm},$$
 
:$$ v_{\rm max}  = 2 \cdot [a_{\rm max} - A_{\rm 0}] = 2 \cdot [2\,{\rm V} - 1.273\,{\rm V}] \hspace{0.15cm}\underline {=1.454\,{\rm V}}\hspace{0.05cm},$$
 
:$$ v_{\rm min}  =  -2 \cdot A_{\rm 0} \hspace{0.15cm}\underline {= -2.546\,{\rm V}}\hspace{0.05cm}.$$
 
:$$ v_{\rm min}  =  -2 \cdot A_{\rm 0} \hspace{0.15cm}\underline {= -2.546\,{\rm V}}\hspace{0.05cm}.$$
  
  
'''(2)'''  Unter Vernachlässigung der Fourierkoeffizienten $A_5$, $A_6$, usw. erhält man:
+
 
 +
'''(2)'''  Unter Vernachlässigung der Fourierkoeffizienten  $A_5$,  $A_6$,  usw. erhält man:
 
:$$K = \frac{\sqrt{A_2^2 + A_3^2+ A_4^2 }}{A_1}= \frac{\sqrt{0.170^2 + 0.073^2 + 0.040^2 }{\,\rm V}}{0.849\,{\rm V}}\hspace{0.15cm}\underline { \approx 22.3 \%}.$$
 
:$$K = \frac{\sqrt{A_2^2 + A_3^2+ A_4^2 }}{A_1}= \frac{\sqrt{0.170^2 + 0.073^2 + 0.040^2 }{\,\rm V}}{0.849\,{\rm V}}\hspace{0.15cm}\underline { \approx 22.3 \%}.$$
Die Näherung $K ≈ μ/4$ liefert hier den Wert $25\%$.
+
*Die Näherung  $K ≈ μ/4$  liefert hier den Wert $25\%$.
 +
 
  
  
 
'''(3)'''&nbsp; Nur der <u>erste Lösungsvorschlag</u> ist richtig.  
 
'''(3)'''&nbsp; Nur der <u>erste Lösungsvorschlag</u> ist richtig.  
*Aufgrund des Hochpasses innerhalb des Hüllkurvendemodulators wäre der Gleichsignalanteil auch dann $0$, wenn keine Verzerrungen vorlägen.
+
*Aufgrund des Hochpasses innerhalb des Hüllkurvendemodulators wäre der Gleichsignalanteil auch dann Null, wenn keine Verzerrungen vorlägen.
 +
 
  
  
  
'''(4)'''&nbsp; Analog zur Teilaufgabe '''(1)''' gilt hier:
+
'''(4)'''&nbsp; Analog zur Teilaufgabe&nbsp; '''(1)'''&nbsp; gilt hier:
 
:$$v_{\rm max}  =  2 \cdot [a_{\rm max} - A_{\rm 0}] = 2 \cdot [1.5\,{\rm V} - 1.064\,{\rm V}] \hspace{0.15cm}\underline {= 0.872\,{\rm V}}\hspace{0.05cm},$$
 
:$$v_{\rm max}  =  2 \cdot [a_{\rm max} - A_{\rm 0}] = 2 \cdot [1.5\,{\rm V} - 1.064\,{\rm V}] \hspace{0.15cm}\underline {= 0.872\,{\rm V}}\hspace{0.05cm},$$
 
:$$ v_{\rm min}  =  -2 \cdot A_{\rm 0} \hspace{0.15cm}\underline {= -2.128\,{\rm V}}\hspace{0.05cm}.$$
 
:$$ v_{\rm min}  =  -2 \cdot A_{\rm 0} \hspace{0.15cm}\underline {= -2.128\,{\rm V}}\hspace{0.05cm}.$$
 +
  
  
 
'''(5)'''&nbsp; Bei kleinerem Seitenband–zu–Träger–Verhältnis ergibt sich auch ein kleinerer Klirrfaktor:
 
'''(5)'''&nbsp; Bei kleinerem Seitenband–zu–Träger–Verhältnis ergibt sich auch ein kleinerer Klirrfaktor:
 
:$$K = \frac{0.058{\,\rm V}}{0.484\,{\rm V}}\hspace{0.15cm}\underline { \approx 12 \%}.$$
 
:$$K = \frac{0.058{\,\rm V}}{0.484\,{\rm V}}\hspace{0.15cm}\underline { \approx 12 \%}.$$
*Die Näherung $K ≈ μ/4$ ergibt hier $12.5\%$.  
+
*Die einfache Näherung&nbsp; $K ≈ μ/4$&nbsp; ergibt hier&nbsp; $12.5\%$.  
*Daraus kann geschlossen werden, dass die angegebene Faustformel bei kleinerem $μ$ genauer ist.
+
*Daraus kann geschlossen werden, dass die angegebene Faustformel bei kleinerem&nbsp; $μ$&nbsp; genauer ist.
  
  
  
'''(6)'''&nbsp; Der Klirrfaktor ist dann am größten, wenn eines der Seitenbänder völlig abgeschnitten wird. Da aber der Hüllkurvendemodulator keinerlei Kenntnis davon hat, ob  
+
'''(6)'''&nbsp; Der Klirrfaktor ist dann am größten, wenn eines der Seitenbänder völlig abgeschnitten wird.&nbsp;
*eine ESB–AM, oder  
+
*Da aber der Hüllkurvendemodulator keinerlei Kenntnis davon hat, ob  
*eine durch den Kanal extrem beeinträchtigte ZSB–AM  
+
**eine ESB–AM, oder  
 +
**eine durch den Kanal extrem beeinträchtigte ZSB–AM  
  
  
vorliegt, gibt $K_{\rm max} ≈ μ/4$ gleichzeitig eine obere Schranke für die ZSB–AM an.
+
vorliegt, gibt&nbsp; $K_{\rm max} ≈ μ/4$&nbsp; gleichzeitig eine obere Schranke für die ZSB–AM an.
  
Ein Vergleich der Parameter $m = A_{\rm N}/A_{\rm T}$ und $μ = A_{\rm N}/(2A_{\rm T})$ führt zum Ergebnis:  
+
*Ein Vergleich der Parameter&nbsp; $m = A_{\rm N}/A_{\rm T}$&nbsp; und&nbsp; $μ = A_{\rm N}/(2A_{\rm T})$&nbsp; führt zum Ergebnis:  
 
:$$K_{\rm max} = \frac{\mu}{4} = \frac{m}{8} \hspace{0.15cm}\underline {=6.25 \%}.$$
 
:$$K_{\rm max} = \frac{\mu}{4} = \frac{m}{8} \hspace{0.15cm}\underline {=6.25 \%}.$$
 
{{ML-Fuß}}
 
{{ML-Fuß}}

Version vom 18. März 2020, 14:32 Uhr

(Normierte) Hüllkurve bei der
Einseitenband–Modulation

Wir betrachten die Übertragung des Cosinussignals

$$ q(t) = A_{\rm N} \cdot \cos(\omega_{\rm N} \cdot t)$$

gemäß dem Modulationsverfahren „OSB–AM mit Träger”.  Beim Empfänger wird das hochfrequente Signal mittels eines  Hüllkurvendemodulators  in den NF-Bereich zurückgesetzt.

Der Kanal wird als ideal vorausgesetzt, so dass das Empfangssignal   $r(t)$  identisch mit dem Sendesignal  $s(t)$  ist.  Mit dem Seitenband–zu–Träger–Verhältnis

$$ \mu = \frac{A_{\rm N}}{2 \cdot A_{\rm T}}$$

kann für das äquivalente Tiefpass–Signal auch geschrieben werden:

$$r_{\rm TP}(t) = A_{\rm T} \cdot \left( 1 + \mu \cdot {\rm e}^{{\rm j} \hspace{0.03cm}\cdot \hspace{0.03cm}\omega_{\rm N}\cdot \hspace{0.03cm}\hspace{0.03cm}t} \right) \hspace{0.05cm}$$

Die Hüllkurve – also der Betrag dieses komplexen Signals – kann durch geometrische Überlegungen ermittelt werden.  Man erhält abhängig vom Parameter  $μ$:

$$a(t ) = A_{\rm T} \cdot \sqrt{1+ \mu^2 + 2 \mu \cdot \cos(\omega_{\rm N} \cdot t)}\hspace{0.05cm}.$$

In der Grafik ist die zeitabhängige Hüllkurve  $a(t)$  für  $μ = 1$  und  $μ = 0.5$  dargestellt.  Als gestrichelte Vergleichskurven sind jeweils die in der Amplitude angepassten Cosinusschwingungen eingezeichnet, die für eine verzerrungsfreie Demodulation Voraussetzung wären.

  • Das periodische Signal  $a(t)$  kann durch eine  Fourierreihe  angenähert werden:
$$a(t ) = A_{\rm 0} + A_{\rm 1} \cdot \cos(\omega_{\rm N} \cdot t) + A_{\rm 2} \cdot \cos(2\omega_{\rm N} \cdot t)+ A_{\rm 3} \cdot \cos(3\omega_{\rm N} \cdot t)\hspace{0.05cm}+\text{...}$$
  • Die Fourierkoeffizienten wurden mit Hilfe eines Simulationsprogrammes ermittelt.  Für  $μ = 1$  ergaben sich folgende Werte:
$$A_{\rm 0} = 1.273\,{\rm V},\hspace{0.3cm} A_{\rm 1} = 0.849\,{\rm V},\hspace{0.3cm}A_{\rm 2} = -0.170\,{\rm V},\hspace{0.3cm} A_{\rm 3} = 0.073\,{\rm V},\hspace{0.3cm}A_{\rm 4} = 0.040\,{\rm V} \hspace{0.05cm}.$$
  • Entsprechend ergab die Simulation mit  $μ = 0.5$:
$$A_{\rm 0} = 1.064\,{\rm V},\hspace{0.3cm} A_{\rm 1} = 0.484\,{\rm V},\hspace{0.3cm}A_{\rm 2} = 0.058\,{\rm V} \hspace{0.05cm}.$$
Die hier nicht angegebenen Werte können bei der Klirrfaktorberechnung vernachlässigt werden.
  • Das Sinkensignal  $v(t)$  ergibt sich aus  $a(t)$  wie folgt:
$$v(t) = 2 \cdot \big [a(t ) - A_{\rm 0} \big ] \hspace{0.05cm}.$$
Der Faktor  $2$  korrigiert dabei die Amplitudenminderung durch die ESB–AM, während die Subtraktion des Gleichsignalkoeffizienten  $A_0$  den Einfluss des Hochpasses innerhalb des Hüllkurvendemodulators berücksichtigt.


Für die Fragen  (1)  bis  (3)  wird  $A_{\rm N} = 2 \ \rm V$, $A_{\rm T} = 1 \ \rm V$   ⇒   $μ = 1$  vorausgesetzt, während ab Frage  (4)  für den Parameter  $μ = 0.5$   ⇒   $A_{\rm N} = A_{\rm T} = 1 \ \rm V$  gelten soll.





Hinweise:

  • Die Aufgabe gehört zum Kapitel  Einseitenbandmodulation.
  • Bezug genommen wird insbesondere auf die Seite  Seitenband-zu-Träger-Verhältnis.
  • Vergleichen Sie Ihre Ergebnisse auch mit der Faustformel, die besagt, dass bei der Hüllkurvendemodulation eines ESB–AM–Signals mit dem Seitenband–zu–Träger–Verhältnis  $μ$  der Klirrfaktor  $K ≈ μ/4$  beträgt.




Fragebogen

1

Geben Sie den Maximalwert und den Minimalwert des Sinkensignals  $v(t)$  für  $μ = 1$  an.

$v_{\rm max} \ = \ $

$\ \rm V$
$v_{\rm min} \ = \ $

$\ \rm V$

2

Berechnen Sie den Klirrfaktor für  $μ = 1$.

$K \ = \ $

$\ \text{%}$

3

Woran erkennt man die nichtlinearen Verzerrungen im vorliegenden Signal  $v(t)$?

Die untere Cosinushalbwelle ist spitzförmiger als die obere.
Der Gleichsignalanteil  ${\rm Ε}\big[v(t)\big ] = 0$.

4

Geben Sie den Maximalwert und den Minimalwert des Sinkensignals  $v(t)$  für  $μ = 0.5$  an.

$v_{\rm max} \ = \ $

$\ \rm V$
$v_{\rm min} \ = \ $

$\ \rm V$

5

Berechnen Sie den Klirrfaktor für  $μ = 0.5$.

$K \ = \ $

$\ \text{%}$

6

Wie lautet die obere Schranke  $K_{\rm max}$  für den Klirrfaktor bei ZSB–AM mit  $m = 0.5$  und Hüllkurvendemodulation, wenn ein Seitenband durch den Kanal vollständig gedämpft wird.

$K_{\rm max} \ = \ $

$\ \text{%}$


Musterlösung

(1)  Der Maximalwert  $a_{\rm max} = 2\ \rm V$  und der Minimalwert  $a_{\rm min} = 0$  können aus der Grafik abgelesen oder über die angegebene Gleichung berechnet werden:

$$ a_{\rm max} = A_{\rm T} \cdot \sqrt{1+ \mu^2 + 2 \mu}= A_{\rm T} \cdot (1+ \mu) = 2\,{\rm V} \hspace{0.05cm},$$
$$a_{\rm min} = A_{\rm T} \cdot \sqrt{1+ \mu^2 - 2 \mu}= A_{\rm T} \cdot (1- \mu) = 0 \hspace{0.05cm}.$$
  • Für die beiden Extremwerte des Sinkensignals folgt daraus:
$$ v_{\rm max} = 2 \cdot [a_{\rm max} - A_{\rm 0}] = 2 \cdot [2\,{\rm V} - 1.273\,{\rm V}] \hspace{0.15cm}\underline {=1.454\,{\rm V}}\hspace{0.05cm},$$
$$ v_{\rm min} = -2 \cdot A_{\rm 0} \hspace{0.15cm}\underline {= -2.546\,{\rm V}}\hspace{0.05cm}.$$


(2)  Unter Vernachlässigung der Fourierkoeffizienten  $A_5$,  $A_6$,  usw. erhält man:

$$K = \frac{\sqrt{A_2^2 + A_3^2+ A_4^2 }}{A_1}= \frac{\sqrt{0.170^2 + 0.073^2 + 0.040^2 }{\,\rm V}}{0.849\,{\rm V}}\hspace{0.15cm}\underline { \approx 22.3 \%}.$$
  • Die Näherung  $K ≈ μ/4$  liefert hier den Wert $25\%$.


(3)  Nur der erste Lösungsvorschlag ist richtig.

  • Aufgrund des Hochpasses innerhalb des Hüllkurvendemodulators wäre der Gleichsignalanteil auch dann Null, wenn keine Verzerrungen vorlägen.



(4)  Analog zur Teilaufgabe  (1)  gilt hier:

$$v_{\rm max} = 2 \cdot [a_{\rm max} - A_{\rm 0}] = 2 \cdot [1.5\,{\rm V} - 1.064\,{\rm V}] \hspace{0.15cm}\underline {= 0.872\,{\rm V}}\hspace{0.05cm},$$
$$ v_{\rm min} = -2 \cdot A_{\rm 0} \hspace{0.15cm}\underline {= -2.128\,{\rm V}}\hspace{0.05cm}.$$


(5)  Bei kleinerem Seitenband–zu–Träger–Verhältnis ergibt sich auch ein kleinerer Klirrfaktor:

$$K = \frac{0.058{\,\rm V}}{0.484\,{\rm V}}\hspace{0.15cm}\underline { \approx 12 \%}.$$
  • Die einfache Näherung  $K ≈ μ/4$  ergibt hier  $12.5\%$.
  • Daraus kann geschlossen werden, dass die angegebene Faustformel bei kleinerem  $μ$  genauer ist.


(6)  Der Klirrfaktor ist dann am größten, wenn eines der Seitenbänder völlig abgeschnitten wird. 

  • Da aber der Hüllkurvendemodulator keinerlei Kenntnis davon hat, ob
    • eine ESB–AM, oder
    • eine durch den Kanal extrem beeinträchtigte ZSB–AM


vorliegt, gibt  $K_{\rm max} ≈ μ/4$  gleichzeitig eine obere Schranke für die ZSB–AM an.

  • Ein Vergleich der Parameter  $m = A_{\rm N}/A_{\rm T}$  und  $μ = A_{\rm N}/(2A_{\rm T})$  führt zum Ergebnis:
$$K_{\rm max} = \frac{\mu}{4} = \frac{m}{8} \hspace{0.15cm}\underline {=6.25 \%}.$$