Aufgaben:Aufgabe 3.10Z: Rayleigh? Oder Rice?: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
Zeile 4: Zeile 4:
  
 
[[Datei:P_ID149__Sto_Z_3_10.png|right|frame|Beschreibt die vorliegende WDF Rayleigh oder Rice?]]
 
[[Datei:P_ID149__Sto_Z_3_10.png|right|frame|Beschreibt die vorliegende WDF Rayleigh oder Rice?]]
Die Wahrscheinlichkeitsdichtefunktion der Zufallsgröße $x$ ist wie folgt gegeben:
+
Die Wahrscheinlichkeitsdichtefunktion der Zufallsgröße  $x$  ist wie folgt gegeben:
 
:$$f_x(x)=\frac{\it x}{\lambda^{2}}\cdot{\rm e}^{-x^{\rm 2}/(\lambda^{\rm 2})}.$$
 
:$$f_x(x)=\frac{\it x}{\lambda^{2}}\cdot{\rm e}^{-x^{\rm 2}/(\lambda^{\rm 2})}.$$
  
Zeile 10: Zeile 10:
 
:$$F_x(r)= {\rm Pr}(x \le r) = 1-{\rm e}^{- r^{\rm 2}/(2 \lambda^{\rm 2})}.$$
 
:$$F_x(r)= {\rm Pr}(x \le r) = 1-{\rm e}^{- r^{\rm 2}/(2 \lambda^{\rm 2})}.$$
  
Bekannt ist, dass der Wert $x_0 = 2$ am häufigsten auftritt. Das bedeutet auch, dass die WDF $f_x(x)$ bei $x = x_0 $ maximal ist.
+
*Bekannt ist, dass der Wert  $x_0 = 2$  am häufigsten auftritt.  
 +
*Das bedeutet auch, dass die WDF  $f_x(x)$  bei  $x = x_0 $  maximal ist.
 +
 
 +
 
  
  
Zeile 17: Zeile 20:
  
 
''Hinweise:''  
 
''Hinweise:''  
*Die Aufgabe gehört zum  Kapitel [[Stochastische_Signaltheorie/Weitere_Verteilungen|Weitere Verteilungen]].
+
*Die Aufgabe gehört zum  Kapitel  [[Stochastische_Signaltheorie/Weitere_Verteilungen|Weitere Verteilungen]].
*Insbesondere wird auf die Seiten  [[Stochastische_Signaltheorie/Weitere_Verteilungen#Rayleighverteilung|Rayleighverteilung]] und  [[Stochastische_Signaltheorie/Weitere_Verteilungen#Riceverteilung|Riceverteilung]] Bezug genommen .
+
*Insbesondere wird auf die Seiten  [[Stochastische_Signaltheorie/Weitere_Verteilungen#Rayleighverteilung|Rayleighverteilung]]  und  [[Stochastische_Signaltheorie/Weitere_Verteilungen#Riceverteilung|Riceverteilung]]  Bezug genommen .
 
   
 
   
*Sie können Ihre Ergebnisse mit Berechnungstool [[Applets:WDF_VTF|WDF, VTF und Momente spezieller Verteilungen]] überprüfen.
+
*Sie können Ihre Ergebnisse mit interaktiven Applet  [[Applets:WDF,_VTF_und_Momente_spezieller_Verteilungen_(Applet)|WDF, VTF und Momente spezieller Verteilungen]]  überprüfen.
 
*Berücksichtigen Sie bei der Lösung das folgende bestimmte Integral:
 
*Berücksichtigen Sie bei der Lösung das folgende bestimmte Integral:
 
:$$\int_{0}^{\infty}x^{\rm 2}\cdot {\rm e}^{ -x^{\rm 2}/\rm 2}  \, {\rm d}x=\sqrt{{\pi}/{\rm 2}}.$$
 
:$$\int_{0}^{\infty}x^{\rm 2}\cdot {\rm e}^{ -x^{\rm 2}/\rm 2}  \, {\rm d}x=\sqrt{{\pi}/{\rm 2}}.$$
Zeile 34: Zeile 37:
 
- Es handelt sich um eine riceverteilte Zufallsgröße.
 
- Es handelt sich um eine riceverteilte Zufallsgröße.
 
+ Es handelt sich um eine rayleighverteilte Zufallsgröße.
 
+ Es handelt sich um eine rayleighverteilte Zufallsgröße.
- Das Zentralmoment 3. Ordnung    ⇒   $\mu_3$ ist $0$.
+
- Das Zentralmoment 3. Ordnung    ⇒   $\mu_3$  ist Null.
- Die Kurtosis hat den Wert $K_x = 3$.
+
- Die Kurtosis hat den Wert  $K_x = 3$.
  
  
{Welchen Zahlenwert hat hier der Verteilungsparameter $\lambda$?
+
{Welchen Zahlenwert hat hier der Verteilungsparameter  $\lambda$?
 
|type="{}"}
 
|type="{}"}
 
$\lambda \ = \ $ { 2 3% }
 
$\lambda \ = \ $ { 2 3% }
  
  
{Wie groß ist die Wahrscheinlichkeit, dass $x$ kleiner als $x_0$ ist?
+
{Wie groß ist die Wahrscheinlichkeit, dass  $x$  kleiner als  $x_0 = 2$  ist?
 
|type="{}"}
 
|type="{}"}
 
${\rm Pr}(x < x_0 ) \ =  \ $ { 0.393 3% }
 
${\rm Pr}(x < x_0 ) \ =  \ $ { 0.393 3% }
  
  
{Wie gro&szlig; ist der Mittelwert der Zufallsgr&ouml;&szlig;e $x$? Interpretation.
+
{Wie gro&szlig; ist der Mittelwert der Zufallsgr&ouml;&szlig;e&nbsp; $x$? Interpretation.
 
|type="{}"}
 
|type="{}"}
 
$m_x \ =  \ $ { 2.506 3% }
 
$m_x \ =  \ $ { 2.506 3% }
  
  
{Mit welcher Wahrscheinlichkeit ist $x$ gr&ouml;&szlig;er als sein Mittelwert $m_x$?
+
{Mit welcher Wahrscheinlichkeit ist&nbsp; $x$&nbsp; gr&ouml;&szlig;er als sein Mittelwert&nbsp; $m_x$?
 
|type="{}"}
 
|type="{}"}
 
${\rm Pr}(x > m_x) \ =  \ $ { 0.456 3% }
 
${\rm Pr}(x > m_x) \ =  \ $ { 0.456 3% }

Version vom 25. November 2019, 14:08 Uhr

Beschreibt die vorliegende WDF Rayleigh oder Rice?

Die Wahrscheinlichkeitsdichtefunktion der Zufallsgröße  $x$  ist wie folgt gegeben:

$$f_x(x)=\frac{\it x}{\lambda^{2}}\cdot{\rm e}^{-x^{\rm 2}/(\lambda^{\rm 2})}.$$

Entsprechend gilt für die zugehörige Verteilungsfunktion:

$$F_x(r)= {\rm Pr}(x \le r) = 1-{\rm e}^{- r^{\rm 2}/(2 \lambda^{\rm 2})}.$$
  • Bekannt ist, dass der Wert  $x_0 = 2$  am häufigsten auftritt.
  • Das bedeutet auch, dass die WDF  $f_x(x)$  bei  $x = x_0 $  maximal ist.




Hinweise:

$$\int_{0}^{\infty}x^{\rm 2}\cdot {\rm e}^{ -x^{\rm 2}/\rm 2} \, {\rm d}x=\sqrt{{\pi}/{\rm 2}}.$$



Fragebogen

1

Welche der folgenden Aussagen treffen zu?

Es handelt sich um eine riceverteilte Zufallsgröße.
Es handelt sich um eine rayleighverteilte Zufallsgröße.
Das Zentralmoment 3. Ordnung   ⇒   $\mu_3$  ist Null.
Die Kurtosis hat den Wert  $K_x = 3$.

2

Welchen Zahlenwert hat hier der Verteilungsparameter  $\lambda$?

$\lambda \ = \ $

3

Wie groß ist die Wahrscheinlichkeit, dass  $x$  kleiner als  $x_0 = 2$  ist?

${\rm Pr}(x < x_0 ) \ = \ $

4

Wie groß ist der Mittelwert der Zufallsgröße  $x$? Interpretation.

$m_x \ = \ $

5

Mit welcher Wahrscheinlichkeit ist  $x$  größer als sein Mittelwert  $m_x$?

${\rm Pr}(x > m_x) \ = \ $


Musterlösung

(1)  Richtig ist allein der zweite Lösungsvorschlag.

  • Aufgrund der gegebenen WDF liegt keine Riceverteilung, sondern eine Rayleighverteilung vor.
  • Diese ist um den Mittelwert $m_x$ unsymmetrisch, so dass $\mu_3 \ne 0$ ist.
  • Nur bei einer gaußverteilten Zufallsgröße gilt für die Kurtosis $K = 3$.
  • Bei der Rayleighverteilung ergibt sich aufgrund ausgeprägterer WDF–Ausläufer ein größerer Wert $(K = 3.245)$, und zwar unabhängig von $\lambda$.


(2)  Die Ableitung der WDF nach $x$ liefert:

$$\frac{{\rm d} f_x(x)}{{\rm d} x} = \frac{\rm 1}{\lambda^{\rm 2}}\cdot{\rm e}^{ -{x^{\rm 2}}/({2 \lambda^{\rm 2}})}+\frac{ x}{ \lambda^{\rm 2}}\cdot{\rm e}^{ -{x^{\rm 2}}/({ 2 \lambda^{\rm 2}})}\cdot(-\frac{2 x}{2 \lambda^{\rm 2}}).$$

Daraus folgt als Bestimmungsgleichung für $x_0$ (nur die positive Lösung ist sinnvoll):

$$\frac{1}{\lambda^{\rm 2}}\cdot{\rm e}^{ -{x_{\rm 0}^{\rm 2}}/{(2 \lambda^{\rm 2}})}\cdot(\rm 1-{\it x_{\rm 0}^{\rm 2}}/{\it \lambda^{\rm 2}})=0 \quad \Rightarrow \quad {\it x}_0=\it \lambda.$$

Somit erhält man für den Verteilungsparameter $\lambda = x_0\hspace{0.15cm}\underline{= 2}$.


(3)  Die gesuchte Wahrscheinlichkeit ist gleich der Verteilungsfunktion an der Stelle $r = x_0 = \lambda$:

$${\rm Pr}(x<x_{\rm 0})={\rm Pr}( x \le x_{\rm 0})= F_x(x_{\rm 0})=1-{\rm e}^{-{\lambda^{\rm 2}}/({ 2 \lambda^{\rm 2}})}=1-{\rm e}^{-0.5}\hspace{0.15cm}\underline{=\rm 0.393}.$$


(4)  Der Mittelwert kann beispielsweise nach folgender Gleichung ermittelt werden:

$$m_x=\int_{-\infty}^{+\infty}\hspace{-0.45cm}x\cdot f_x(x)\,{\rm d}x=\int_{\rm 0}^{\infty}\frac{\it x^{\rm 2}}{\it \lambda^{\rm 2}} \cdot \rm e^{-{\it x^{\rm 2}}/({\rm 2\it \lambda^{\rm 2}})}\,{\rm d}\it x = \sqrt{{\rm \pi}/{\rm 2}}\cdot \it \lambda\hspace{0.15cm}\underline{=\rm 2.506}.$$

Der Mittelwert $m_x$ ist natürlich größer als $x_0$ (= Maximalwert der WDF), da die WDF zwar nach unten, aber nicht nach oben begrenzt ist.


(5)  Allgemein gilt für die gesuchte Wahrscheinlichkeit:

$${\rm Pr}(x>m_x)=1- F_x(m_x).$$

Mit der angegebenen Verteilungsfunktion und dem Ergebnis der Teilaufgabe (4) erhält man:

$${\rm Pr}(x>m_x)={\rm e}^{-{m_x^{\rm 2}}/({ 2\lambda^{\rm 2})}}={\rm e}^{-\pi/ 4}\hspace{0.15cm}\underline{\approx \rm 0.456}.$$