Aufgaben:Aufgabe 1.4: Maximum–Likelihood–Entscheidung: Unterschied zwischen den Versionen
Aus LNTwww
Zeile 9: | Zeile 9: | ||
:x_0 = (0,0,0,0,0), x_1 = (0,1,0,1,0), x_2 = (1,0,1,0,1), x_3 = (1,1,1,1,1); | :x_0 = (0,0,0,0,0), x_1 = (0,1,0,1,0), x_2 = (1,0,1,0,1), x_3 = (1,1,1,1,1); | ||
*ein digitales (binäres) Kanalmodell, das den Vektor x_∈GF(25) in den Vektor y_∈GF(25) verfälscht; | *ein digitales (binäres) Kanalmodell, das den Vektor x_∈GF(25) in den Vektor y_∈GF(25) verfälscht; | ||
− | *ein [[Kanalcodierung/Kanalmodelle_und_Entscheiderstrukturen#Maximum-Likelihood.E2.80.93Entscheidung_beim_BSC.E2.80.93Kanal|Maximum–Likelihood–Decoder]] mit der Entscheidungsregel | + | *ein [[Kanalcodierung/Kanalmodelle_und_Entscheiderstrukturen#Maximum-Likelihood.E2.80.93Entscheidung_beim_BSC.E2.80.93Kanal|Maximum–Likelihood–Decoder]] (kurz: ML–Decoder) mit der Entscheidungsregel |
:z_=argmax | :\underline{z} = {\rm arg} \max_{\underline{x}_{\hspace{0.03cm}i} \hspace{0.05cm} \in \hspace{0.05cm} \mathcal{C}} \hspace{0.1cm} {\rm Pr}( \underline{x}_{\hspace{0.03cm}i} \hspace{0.05cm}|\hspace{0.05cm} \underline{y} ) = {\rm arg} \min_{\underline{x}_{\hspace{0.03cm}i} \hspace{0.05cm} \in \hspace{0.05cm} \mathcal{C}} \hspace{0.1cm} d_{\rm H}(\underline{y} \hspace{0.05cm}, \hspace{0.1cm}\underline{x}_{\hspace{0.03cm}i}). | ||
Zeile 68: | Zeile 68: | ||
:d_{\rm H}(\underline{y}, \hspace{0.05cm}\underline{x}_0) = 2\hspace{0.05cm}, \hspace{0.3cm} d_{\rm H}(\underline{y}, \hspace{0.05cm}\underline{x}_1) = 4\hspace{0.05cm}, \hspace{0.3cm} d_{\rm H}(\underline{y}, \hspace{0.05cm}\underline{x}_2) = 1\hspace{0.05cm}, \hspace{0.3cm} d_{\rm H}(\underline{y}, \hspace{0.05cm}\underline{x}_3) = 3\hspace{0.05cm}. | :d_{\rm H}(\underline{y}, \hspace{0.05cm}\underline{x}_0) = 2\hspace{0.05cm}, \hspace{0.3cm} d_{\rm H}(\underline{y}, \hspace{0.05cm}\underline{x}_1) = 4\hspace{0.05cm}, \hspace{0.3cm} d_{\rm H}(\underline{y}, \hspace{0.05cm}\underline{x}_2) = 1\hspace{0.05cm}, \hspace{0.3cm} d_{\rm H}(\underline{y}, \hspace{0.05cm}\underline{x}_3) = 3\hspace{0.05cm}. | ||
*Entschieden wird sich für die Folge mit der geringsten Hamming–Distanz d_{\rm H}(\underline{y}, \hspace{0.05cm}\underline{x}_2) = 1. | *Entschieden wird sich für die Folge mit der geringsten Hamming–Distanz d_{\rm H}(\underline{y}, \hspace{0.05cm}\underline{x}_2) = 1. | ||
+ | |||
'''(2)''' Für \underline{y} = (0, 0, 0, 1, 0) sind die <u>Antworten 1 und 2</u> richtig, wie die folgende Rechnung zeigt: | '''(2)''' Für \underline{y} = (0, 0, 0, 1, 0) sind die <u>Antworten 1 und 2</u> richtig, wie die folgende Rechnung zeigt: | ||
:d_{\rm H}(\underline{y}, \hspace{0.05cm}\underline{x}_0) = 1\hspace{0.05cm}, \hspace{0.3cm} d_{\rm H}(\underline{y}, \hspace{0.05cm}\underline{x}_1) = 1\hspace{0.05cm}, \hspace{0.3cm} d_{\rm H}(\underline{y}, \hspace{0.05cm}\underline{x}_2) = 4\hspace{0.05cm}, \hspace{0.3cm} d_{\rm H}(\underline{y}, \hspace{0.05cm}\underline{x}_3) = 4\hspace{0.05cm}. | :d_{\rm H}(\underline{y}, \hspace{0.05cm}\underline{x}_0) = 1\hspace{0.05cm}, \hspace{0.3cm} d_{\rm H}(\underline{y}, \hspace{0.05cm}\underline{x}_1) = 1\hspace{0.05cm}, \hspace{0.3cm} d_{\rm H}(\underline{y}, \hspace{0.05cm}\underline{x}_2) = 4\hspace{0.05cm}, \hspace{0.3cm} d_{\rm H}(\underline{y}, \hspace{0.05cm}\underline{x}_3) = 4\hspace{0.05cm}. | ||
+ | |||
'''(3)''' Richtig ist die <u>Antwort 3</u>: | '''(3)''' Richtig ist die <u>Antwort 3</u>: | ||
*Entsprechend der Hamming–Distanz wäre eine Entscheidung zugunsten von x_{2} genau so möglich wie für x_{3}, wenn der Vektor \underline{y} = (1, 0, 1, 1, 1) empfangen wird: | *Entsprechend der Hamming–Distanz wäre eine Entscheidung zugunsten von x_{2} genau so möglich wie für x_{3}, wenn der Vektor \underline{y} = (1, 0, 1, 1, 1) empfangen wird: | ||
:d_{\rm H}(\underline{y}, \hspace{0.05cm}\underline{x}_0) = 4\hspace{0.05cm}, \hspace{0.3cm} d_{\rm H}(\underline{y}, \hspace{0.05cm}\underline{x}_1) = 4\hspace{0.05cm}, \hspace{0.3cm} d_{\rm H}(\underline{y}, \hspace{0.05cm}\underline{x}_2) = 1\hspace{0.05cm}, \hspace{0.3cm} d_{\rm H}(\underline{y}, \hspace{0.05cm}\underline{x}_3) = 1\hspace{0.05cm}. | :d_{\rm H}(\underline{y}, \hspace{0.05cm}\underline{x}_0) = 4\hspace{0.05cm}, \hspace{0.3cm} d_{\rm H}(\underline{y}, \hspace{0.05cm}\underline{x}_1) = 4\hspace{0.05cm}, \hspace{0.3cm} d_{\rm H}(\underline{y}, \hspace{0.05cm}\underline{x}_2) = 1\hspace{0.05cm}, \hspace{0.3cm} d_{\rm H}(\underline{y}, \hspace{0.05cm}\underline{x}_3) = 1\hspace{0.05cm}. | ||
− | *Der Empfangsvektor \underline{y} unterscheidet sich aber von x_{2} bezüglich des vierten Bits und von x_{3} im zweiten Bit. Da das vierte Bit unsicherer ist als das zweite, wird er sich für x_{2} entscheiden . | + | *Der Empfangsvektor \underline{y} unterscheidet sich aber von x_{2} bezüglich des vierten Bits und von x_{3} im zweiten Bit. |
+ | * Da das vierte Bit unsicherer ist als das zweite, wird er sich für x_{2} entscheiden . | ||
+ | |||
Zeile 82: | Zeile 86: | ||
:v_{1} \ \underline{ = 1}, \ v_{2} \ \underline{= 0}. | :v_{1} \ \underline{ = 1}, \ v_{2} \ \underline{= 0}. | ||
− | Es ist nicht sicher, dass \underline{u} = (1, 0) tatsächlich gesendet wurde | + | *Es ist nicht sicher, dass \underline{u} = (1, 0) tatsächlich gesendet wurde. |
+ | *Aber die Wahrscheinlichkeit ist angesichts des Empfangsvektors \underline{y} = (1, 0, 1, 1, 1) hierfür am größten. | ||
{{ML-Fuß}} | {{ML-Fuß}} |
Version vom 6. Mai 2019, 13:17 Uhr
Wir betrachten das digitale Übertragungssystem entsprechend der Grafik. Berücksichtigt sind dabei:
- ein systematischer (5, 2)–Blockcode \mathcal{C} mit den Codeworten
- \underline{x}_{0} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} (0, 0, 0, 0, 0) \hspace{0.05cm}, \underline{x}_{1} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} (0, 1, 0, 1, 0) \hspace{0.05cm}, \underline{x}_{2} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} (1, 0, 1, 0, 1) \hspace{0.05cm}, \underline{x}_{3} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} (1, 1, 1, 1, 1) \hspace{0.05cm};
- ein digitales (binäres) Kanalmodell, das den Vektor \underline{x} \in {\rm GF} (2^{5}) in den Vektor \underline{y} \in {\rm GF} (2^{5}) verfälscht;
- ein Maximum–Likelihood–Decoder (kurz: ML–Decoder) mit der Entscheidungsregel
- \underline{z} = {\rm arg} \max_{\underline{x}_{\hspace{0.03cm}i} \hspace{0.05cm} \in \hspace{0.05cm} \mathcal{C}} \hspace{0.1cm} {\rm Pr}( \underline{x}_{\hspace{0.03cm}i} \hspace{0.05cm}|\hspace{0.05cm} \underline{y} ) = {\rm arg} \min_{\underline{x}_{\hspace{0.03cm}i} \hspace{0.05cm} \in \hspace{0.05cm} \mathcal{C}} \hspace{0.1cm} d_{\rm H}(\underline{y} \hspace{0.05cm}, \hspace{0.1cm}\underline{x}_{\hspace{0.03cm}i}).
Hier bezeichnet d_{\rm H} (\underline{y}, \ \underline{x_{i}}) die Hamming–Distanz zwischen dem Empfangswort \underline{y} und dem (möglicherweise) gesendeten Codewort \underline{x_{i}}.
Hinweis:
- Die Aufgabe gehört zum Kapitel Kanalmodelle und Entscheiderstrukturen.
Fragebogen
Musterlösung
(1) Richtig ist die Antwort 3:
- Die Hamming–Distanzen zwischen dem spezifischen Empfangswort \underline{y} = (1, 0, 0, 0, 1) und den vier möglichen Codeworten \underline{x}_{i} ergeben sich wie folgt:
- d_{\rm H}(\underline{y}, \hspace{0.05cm}\underline{x}_0) = 2\hspace{0.05cm}, \hspace{0.3cm} d_{\rm H}(\underline{y}, \hspace{0.05cm}\underline{x}_1) = 4\hspace{0.05cm}, \hspace{0.3cm} d_{\rm H}(\underline{y}, \hspace{0.05cm}\underline{x}_2) = 1\hspace{0.05cm}, \hspace{0.3cm} d_{\rm H}(\underline{y}, \hspace{0.05cm}\underline{x}_3) = 3\hspace{0.05cm}.
- Entschieden wird sich für die Folge mit der geringsten Hamming–Distanz d_{\rm H}(\underline{y}, \hspace{0.05cm}\underline{x}_2) = 1.
(2) Für \underline{y} = (0, 0, 0, 1, 0) sind die Antworten 1 und 2 richtig, wie die folgende Rechnung zeigt:
- d_{\rm H}(\underline{y}, \hspace{0.05cm}\underline{x}_0) = 1\hspace{0.05cm}, \hspace{0.3cm} d_{\rm H}(\underline{y}, \hspace{0.05cm}\underline{x}_1) = 1\hspace{0.05cm}, \hspace{0.3cm} d_{\rm H}(\underline{y}, \hspace{0.05cm}\underline{x}_2) = 4\hspace{0.05cm}, \hspace{0.3cm} d_{\rm H}(\underline{y}, \hspace{0.05cm}\underline{x}_3) = 4\hspace{0.05cm}.
(3) Richtig ist die Antwort 3:
- Entsprechend der Hamming–Distanz wäre eine Entscheidung zugunsten von x_{2} genau so möglich wie für x_{3}, wenn der Vektor \underline{y} = (1, 0, 1, 1, 1) empfangen wird:
- d_{\rm H}(\underline{y}, \hspace{0.05cm}\underline{x}_0) = 4\hspace{0.05cm}, \hspace{0.3cm} d_{\rm H}(\underline{y}, \hspace{0.05cm}\underline{x}_1) = 4\hspace{0.05cm}, \hspace{0.3cm} d_{\rm H}(\underline{y}, \hspace{0.05cm}\underline{x}_2) = 1\hspace{0.05cm}, \hspace{0.3cm} d_{\rm H}(\underline{y}, \hspace{0.05cm}\underline{x}_3) = 1\hspace{0.05cm}.
- Der Empfangsvektor \underline{y} unterscheidet sich aber von x_{2} bezüglich des vierten Bits und von x_{3} im zweiten Bit.
- Da das vierte Bit unsicherer ist als das zweite, wird er sich für x_{2} entscheiden .
(4) Da es sich hier um einen systematischen Code handelt, ist die Entscheidung für \underline{z} = (1, 0, 1, 0, 1) gleichbedeutend mit der Entscheidung
- v_{1} \ \underline{ = 1}, \ v_{2} \ \underline{= 0}.
- Es ist nicht sicher, dass \underline{u} = (1, 0) tatsächlich gesendet wurde.
- Aber die Wahrscheinlichkeit ist angesichts des Empfangsvektors \underline{y} = (1, 0, 1, 1, 1) hierfür am größten.