Aufgaben:Aufgabe 2.3Z: Kennlinienbetrieb asymmetrisch: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
Zeile 76: Zeile 76:
 
===Musterlösung===
 
===Musterlösung===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''  Unter Berücksichtigung der kubischen Näherung $g_3(x)$ erhält man vor dem Hochpass:
+
'''(1)'''  Unter Berücksichtigung der kubischen Näherung  $g_3(x)$  erhält man vor dem Hochpass:
:$$y_{\rm C}(t) = g_3\left[x_{\rm C}(t)\right] = \left[ C + A \cdot \cos(\omega_0
+
:$$y_{\rm C}(t) = g_3\big[x_{\rm C}(t)\big] = \big[ C + A \cdot \cos(\omega_0
  t)\right] - {1}/{6} \cdot \left[ C + A \cdot \cos(\omega_0
+
  t)\big] - {1}/{6} \cdot \big[ C + A \cdot \cos(\omega_0
  t)\right]^3 $$
+
  t)\big]^3 $$
 
:$$\Rightarrow \;  y_{\rm C}(t) =  
 
:$$\Rightarrow \;  y_{\rm C}(t) =  
 
   C + A \cdot \cos(\omega_0
 
   C + A \cdot \cos(\omega_0
  t) - {1}/{6} \cdot [ C^3 + 3 \cdot C^2 \cdot A \cdot \cos(\omega_0
+
  t) - {1}/{6} \cdot \big[ C^3 + 3 \cdot C^2 \cdot A \cdot \cos(\omega_0
 
  t) +  \hspace{0.09cm}3 \cdot C  \cdot A^2 \cdot \cos^2(\omega_0
 
  t) +  \hspace{0.09cm}3 \cdot C  \cdot A^2 \cdot \cos^2(\omega_0
  t) + A^3 \cdot \cos^3(\omega_0  t)].$$
+
  t) + A^3 \cdot \cos^3(\omega_0  t)\big].$$
  
Das Signal $y_{\rm C}(t)$ beinhaltet eine Gleichkomponente $C- C^3/6$, die aufgrund des Hochpasses im Signal $y(t)$ nicht mehr enthalten ist:   $\underline{ A_0 = 0}$.
+
Das Signal $y_{\rm C}(t)$ beinhaltet eine Gleichkomponente $C - C^3/6$, die aufgrund des Hochpasses im Signal $y(t)$ nicht mehr enthalten ist:  
 +
:$$\underline{ A_0 = 0}.$$
  
  
 
'''(2)'''  Bei Anwendung der angegebenen trigonometrischen Beziehungen erhält man folgende Koeffizienten mit $A= C = 0.5$:
 
'''(2)'''  Bei Anwendung der angegebenen trigonometrischen Beziehungen erhält man folgende Koeffizienten mit $A= C = 0.5$:
:$$A_1 = A - {1}/{6}\cdot 3 \cdot C^2 \cdot A  - {1}/{6} cdot {3}/{4}\cdot
+
:$$A_1 = A - {1}/{6}\cdot 3 \cdot C^2 \cdot A  - {1}/{6} \cdot {3}/{4}\cdot
 
  A^3 = {1}/{2} - {1}/{16} - {1}/{64} = {27}/{64}
 
  A^3 = {1}/{2} - {1}/{16} - {1}/{64} = {27}/{64}
 
\hspace{0.15cm}\underline{ \approx 0.422},$$
 
\hspace{0.15cm}\underline{ \approx 0.422},$$
Zeile 101: Zeile 102:
  
  
'''(3)'''  Die Klirrfaktoren zweiter und dritter Ordnung ergeben sich bei dieser Aufgabe zu $K_2  = 2/27 \approx 7.41\%$ und $K_3  = 1/81 \approx 1.23\%$ Damit ist der Gesamtklirrfaktor
+
'''(3)'''  Die Klirrfaktoren zweiter und dritter Ordnung ergeben sich bei dieser Aufgabe zu $K_2  = 2/27 \approx 7.41\%$ und $K_3  = 1/81 \approx 1.23\%$. Damit erhält man für den Gesamtklirrfaktor
 
:$$K = \sqrt{K_2^2 + K_3^2} \hspace{0.15cm}\underline{\approx7.51 \%}.$$
 
:$$K = \sqrt{K_2^2 + K_3^2} \hspace{0.15cm}\underline{\approx7.51 \%}.$$
  
Zeile 109: Zeile 110:
 
  0.386}.$$
 
  0.386}.$$
  
Die Minimalwerte liegen genau in der Mitte zwischen den Maxima und es gilt:
+
Die Minimalwerte liegen genau in der Mitte zwischen zwei Maxima und es gilt:
 
:$$y_{\rm min}= - A_1 + A_2 - A_3 = -0.422 -0.031 +0.005\hspace{0.15cm}\underline{ =
 
:$$y_{\rm min}= - A_1 + A_2 - A_3 = -0.422 -0.031 +0.005\hspace{0.15cm}\underline{ =
 
  -0.448}.$$
 
  -0.448}.$$
  
Das Signal $y(t)$ ist gegenüber dem in der Skizze auf der Angabenseite eingezeichnetem Signal um $0.448$  nach unten verschoben. Dieser Signalwert ergibt sich aus folgender Gleichung mit $A = C = 1/2$:
+
*Das Signal $y(t)$ ist gegenüber dem in der Skizze auf der Angabenseite eingezeichnetem Signal um $0.448$  nach unten verschoben.  
 +
*Dieser Signalwert ergibt sich aus folgender Gleichung mit $A = C = 1/2$:
 
:$$C - \frac{C \cdot A^2}{4}- \frac{C^3}{6} =  {1}/{2} - {1}/{32}-  {1}/{48}  = 0.448.$$
 
:$$C - \frac{C \cdot A^2}{4}- \frac{C^3}{6} =  {1}/{2} - {1}/{32}-  {1}/{48}  = 0.448.$$
 
{{ML-Fuß}}
 
{{ML-Fuß}}

Version vom 9. November 2018, 13:41 Uhr

Einfluss nichtlinearer Verzerrungen

Am Eingang eines Systems $S$ liegt das Cosinussignal

$$x(t) = A \cdot \cos(\omega_0 t)$$

an, wobei für die Amplitude stets $A = 0.5$ gelten soll. Das System $S$ besteht

  • aus der Addition eines Gleichanteils $C$,
  • einer Nichtlinearität mit der Kennlinie
$$g(x) = \sin(x) \hspace{0.05cm} \approx x -{x^3}\hspace{-0.1cm}/{6} = g_3(x),$$
  • sowie einem idealen Hochpass, der alle Frequenzen bis auf ein Gleichsignal $(f = 0)$ unverfälscht passieren lässt.


Das Ausgangssignal des Gesamtsystems kann allgemein wie folgt dargestellt werden:

$$y(t) = A_0 + A_1 \cdot \cos(\omega_0 t) + A_2 \cdot \cos(2\omega_0 t) + A_3 \cdot \cos(3\omega_0 t) + \hspace{0.05cm}\text{...}$$

Die sinusförmige Kennlinie $g(x)$ soll in der gesamten Aufgabe entsprechend der obigen Gleichung durch die kubische Näherung  $g_3(x)$  approximiert werden. Für $C = 0$ ergäbe sich somit die exakt gleiche Konstellation wie in Aufgabe 2.3, in deren Unterpunkt (2) der Klirrfaktor berechnet wurde:

  • $K = K_{g3} \approx 1.08 \%$  für  $A = 0.5$,
  • $K = K_{g3} \approx 4.76 \%$  für  $A = 1.0$.


Unter Berücksichtigung der Konstanten $A = C = 0.5$ gilt für das Eingangssignal der Nichtlinearität:

$$x_{\rm C}(t) = C + A \cdot \cos(\omega_0 t) = {1}/{2} + {1}/{2}\cdot \cos(\omega_0 t).$$
  • Die Kennlinie wird also unsymmetrisch betrieben mit Werten zwischen $0$ und $1$.
  • In obiger Grafik sind zusätzlich die Signale $x_{\rm C}(t)$ und $y_{\rm C}(t)$ direkt vor und nach der Kennlinie $g(x)$ eingezeichnet.




Hinweise:

  • Als bekannt vorausgesetzt werden die folgenden trigonometrischen Beziehungen:
$$\cos^2(\alpha) = {1}/{2} + {1}/{2} \cdot \cos(2\alpha)\hspace{0.05cm}, \hspace{0.3cm} \cos^3(\alpha) = {3}/{4} \cdot \cos(\alpha) + {1}/{4} \cdot \cos(3\alpha) \hspace{0.05cm}.$$


Fragebogen

1

Berechnen Sie das Ausgangssignal $y(t)$ unter Berücksichtigung des Hochpasses. Wie lautet der Gleichsignalanteil $A_0$?

$A_0 \ = \ $

2

Geben Sie die weiteren Fourierkoeffizienten des Signals $y(t)$ an.

$A_1 \ = \ $

$A_2 \ = \ $

$A_3 \ = \ $

$A_4 \ = \ $

3

Berechnen Sie den Klirrfaktor des Gesamtsystems.

$K \ = \ $

$\ \%$

4

Berechnen Sie den Maximal– und den Minimalwert des Signals $y(t)$.

$y_\text{max} \ = \ $

$y_\text{min} \ = \ $


Musterlösung

(1)  Unter Berücksichtigung der kubischen Näherung  $g_3(x)$  erhält man vor dem Hochpass:

$$y_{\rm C}(t) = g_3\big[x_{\rm C}(t)\big] = \big[ C + A \cdot \cos(\omega_0 t)\big] - {1}/{6} \cdot \big[ C + A \cdot \cos(\omega_0 t)\big]^3 $$
$$\Rightarrow \; y_{\rm C}(t) = C + A \cdot \cos(\omega_0 t) - {1}/{6} \cdot \big[ C^3 + 3 \cdot C^2 \cdot A \cdot \cos(\omega_0 t) + \hspace{0.09cm}3 \cdot C \cdot A^2 \cdot \cos^2(\omega_0 t) + A^3 \cdot \cos^3(\omega_0 t)\big].$$

Das Signal $y_{\rm C}(t)$ beinhaltet eine Gleichkomponente $C - C^3/6$, die aufgrund des Hochpasses im Signal $y(t)$ nicht mehr enthalten ist:

$$\underline{ A_0 = 0}.$$


(2)  Bei Anwendung der angegebenen trigonometrischen Beziehungen erhält man folgende Koeffizienten mit $A= C = 0.5$:

$$A_1 = A - {1}/{6}\cdot 3 \cdot C^2 \cdot A - {1}/{6} \cdot {3}/{4}\cdot A^3 = {1}/{2} - {1}/{16} - {1}/{64} = {27}/{64} \hspace{0.15cm}\underline{ \approx 0.422},$$
$$A_2 = - {1}/{6}\cdot 3 \cdot {1}/{2}\cdot C \cdot A^2 = - \frac{1}{32} \hspace{0.15cm}\underline{\approx -0.031},$$
$$A_3 = - {1}/{6}\cdot \frac{1}{4}\cdot A^3 = - {1}/{192} \hspace{0.15cm}\underline{\approx -0.005}.$$

Terme höherer Ordnung kommen nicht vor. Somit ist auch $\underline{A_4 = 0}$.


(3)  Die Klirrfaktoren zweiter und dritter Ordnung ergeben sich bei dieser Aufgabe zu $K_2 = 2/27 \approx 7.41\%$ und $K_3 = 1/81 \approx 1.23\%$. Damit erhält man für den Gesamtklirrfaktor

$$K = \sqrt{K_2^2 + K_3^2} \hspace{0.15cm}\underline{\approx7.51 \%}.$$


(4)  Der Maximalwert tritt zum Zeitpunkt $t = 0$ und bei Vielfachen von $T$ auf:

$$y_{\rm max}= y(t=0) = A_1 + A_2 + A_3 = 0.422 -0.031 -0.005 \hspace{0.15cm}\underline{= 0.386}.$$

Die Minimalwerte liegen genau in der Mitte zwischen zwei Maxima und es gilt:

$$y_{\rm min}= - A_1 + A_2 - A_3 = -0.422 -0.031 +0.005\hspace{0.15cm}\underline{ = -0.448}.$$
  • Das Signal $y(t)$ ist gegenüber dem in der Skizze auf der Angabenseite eingezeichnetem Signal um $0.448$ nach unten verschoben.
  • Dieser Signalwert ergibt sich aus folgender Gleichung mit $A = C = 1/2$:
$$C - \frac{C \cdot A^2}{4}- \frac{C^3}{6} = {1}/{2} - {1}/{32}- {1}/{48} = 0.448.$$