Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Aufgaben:Aufgabe 3.5Z: Integration von Diracfunktionen: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
K (Textersetzung - „*Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.“ durch „ “)
Zeile 24: Zeile 24:
 
*Der [[Signaldarstellung/Gesetzmäßigkeiten_der_Fouriertransformation#Integrationssatz|Integrationssatz]] lautet in entsprechend angepasster Form:
 
*Der [[Signaldarstellung/Gesetzmäßigkeiten_der_Fouriertransformation#Integrationssatz|Integrationssatz]] lautet in entsprechend angepasster Form:
 
:1Ttx(τ)dτ    X(f)(1j2πfT+12Tδ(f)).
 
:1Ttx(τ)dτ    X(f)(1j2πfT+12Tδ(f)).
*Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
+
  
  

Version vom 29. Mai 2018, 14:02 Uhr

Integration von Diracfunktionen

Wie in der Aufgabe 3.5 soll das Spektrum Y(f) des Signals

y(t)={AA0f¨urf¨ursonst.Tt<0,0<tT,

ermittelt werden. Es gelte wieder A=1V und T=0.5ms.

Ausgegangen wird vom Zeitsignal x(t) gemäß der mittleren Skizze, das sich aus drei Diracimpulsen bei –T, 0 und +T mit den Impulsgewichte {AT}, -2{AT} und {AT} zusammensetzt.

Die Spektralfunktion {X(f)} kann durch Anwendung des Vertauschungssatzes direkt angegeben werden, wenn man berücksichtigt, dass die zu {U(f)} gehörige Zeitfunktion wie folgt lautet (siehe untere Skizze):

u( t ) = - 2A + 2A \cdot \cos ( {2{\rm{\pi }}f_0 t} ).



Hinweise:

y( t ) = \frac{1}{T} \cdot \hspace{-0.1cm} \int_{ - \infty }^{\hspace{0.05cm}t} {x( \tau )}\, {\rm d}\tau .
\frac{1}{T}\cdot \hspace{-0.1cm} \int_{ - \infty }^{\hspace{0.05cm}t} {x( \tau )}\,\, {\rm d}\tau\ \ \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \ \ X( f ) \cdot \left( {\frac{1}{{{\rm{j}}2{\rm{\pi }}fT}} + \frac{1}{2T}\cdot {\rm \delta} ( f )} \right).


Fragebogen

1

Berechnen Sie die Spektralfunktion {X(f)}. Wie groß ist deren Betrag bei den Frequenzen f = 0 und f = 1\, \text{kHz}?

|{X(f = 0)}| \ = \

 \text{mV/Hz}
|{X(f = 1\, \text{kHz})}|\ = \

 \text{mV/Hz}

2

Berechnen Sie die Spektralfunktion {Y(f)}. Welche Werte ergeben sich bei den Frequenzen f = 0 und f = 1\, \text{kHz}?

|{Y(f = 0)}|\ = \

 \text{mV/Hz}
|{Y(f = 1\, \text{kHz})}| \ = \

 \text{mV/Hz}


Musterlösung

(1)  Im Angabenteil zur Aufgabe finden Sie die Fourierkorrespondenz zwischen {u(t)} und {U(f)}. Da sowohl die Zeitfunktionen {u(t)} und {x(t)} als auch die dazugehörigen Spektren {U(f)} und {X(f)} gerade und reell sind, kann man {X(f)} durch Anwendung des Vertauschungssatzes leicht berechnen:

X( f ) = - 2 \cdot A \cdot T + 2 \cdot A \cdot T \cdot \cos \left( {{\rm{2\pi }}fT} \right).

Wegen der Beziehung \sin^{2}(\alpha) = (1 – \cos(\alpha))/2 kann hierfür auch geschrieben werden:

X( f ) = - 4 \cdot A \cdot T \cdot \sin ^2 ( {{\rm{\pi }}fT} ).
  • Bei der Frequenz f = 0 hat {x(t)} keine Spektralanteile   ⇒   {X(f = 0)} \;\underline{= 0}.
  • Für f = 1 \,\text{kHz}, also f \cdot T = 0.5, gilt dagegen:
X( f = 1\;{\rm{kHz}} ) = - 4 \cdot A \cdot T = -2 \cdot 10^{ - 3} \;{\rm{V/Hz}}\; \Rightarrow \; |X( {f = 1\;{\rm{kHz}}} )| \hspace{0.15 cm}\underline{= 2 \;{\rm{mV/Hz}}}{\rm{.}}


(2)  Das Spektrum {Y(f)} kann aus {X(f)} durch Anwendung des Integrationssatzes ermittelt werden. Wegen {X(f = 0)} = 0 muss die Diracfunktion bei der Frequenz f = 0 nicht berücksichtigt werden und man erhält:

Y( f ) = \frac{X( f )}{{{\rm{j}} \cdot 2{\rm{\pi }}fT}} = \frac{{ - 4 \cdot A \cdot T \cdot \sin ^2 ( {{\rm{\pi }}fT} )}}{{{\rm{j}}\cdot 2{\rm{\pi }}fT}} = 2{\rm{j}} \cdot A \cdot T \cdot \frac{{\sin ^2 ( {{\rm{\pi }}fT} )}}{{{\rm{\pi }}fT}}.

Es ergibt sich selbstverständlich das gleiche Ergebnis wie in der Aufgabe 3.5:

  • Bei der Frequenz f = 0 hat auch {y(t)} keine Spektralanteile   ⇒   {Y(f = 0)} \;\underline{= 0}.
  • Für f = 1\,\text{kHz} \ \ (f \cdot T = 0.5) erhält man gegenüber X(f) einen um den Faktor \pi kleineren Wert:
|Y( {f = 1\;{\rm{kHz}}} )| = \frac{4 \cdot A \cdot T}{\rm{\pi }} \hspace{0.15 cm}\underline{= {\rm{0}}{\rm{.636}} \;{\rm{mV/Hz}}}{\rm{.}}