Aufgaben:Aufgabe 1.4Z: Alles rechteckförmig: Unterschied zwischen den Versionen
K (Textersetzung - „*Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.“ durch „ “) |
|||
Zeile 17: | Zeile 17: | ||
* Informationen zur Faltung finden Sie im Kapitel [[Signaldarstellung/Faltungssatz_und_Faltungsoperation|Faltungssatz und Faltungsoperation]] des Buches „Signaldarstellung”. | * Informationen zur Faltung finden Sie im Kapitel [[Signaldarstellung/Faltungssatz_und_Faltungsoperation|Faltungssatz und Faltungsoperation]] des Buches „Signaldarstellung”. | ||
*Wir verweisen auch auf das interaktive Applet [[Applets:Zur_Verdeutlichung_der_graphischen_Faltung_(Applet)|Zur Verdeutlichung der graphischen Faltung]]. | *Wir verweisen auch auf das interaktive Applet [[Applets:Zur_Verdeutlichung_der_graphischen_Faltung_(Applet)|Zur Verdeutlichung der graphischen Faltung]]. | ||
− | + | ||
Version vom 29. Mai 2018, 13:02 Uhr
Wir betrachten das periodische Rechtecksignal $x(t)$ gemäß obiger Skizze, dessen Periodendauer $T_0 = 2T$ ist. Dieses Signal besitzt Spektralanteile bei der Grundfrequenz $f_0 = 1/T_0 = 1/(2T)$ und allen ungeradzahligen Vielfachen davon, d.h. bei $3f_0$, $5f_0,$ usw. Zusätzlich gibt es einen Gleichanteil.
- Dazu betrachten wir zwei Filter $\rm A$ und $\rm B$ mit jeweils rechteckförmiger Impulsantwort $h_{\rm A}(t)$ mit der Dauer $6T$ bzw. $h_{\rm B}(t)$ mit der Dauer $5T$.
- Die Höhen der beiden Impulsantworten sind so gewählt, dass die Flächen der Rechtecke jeweils $1$ ergeben.
Hinweise:
- Die Aufgabe gehört zum Kapitel Systembeschreibung im Zeitbereich
- Informationen zur Faltung finden Sie im Kapitel Faltungssatz und Faltungsoperation des Buches „Signaldarstellung”.
- Wir verweisen auch auf das interaktive Applet Zur Verdeutlichung der graphischen Faltung.
Fragebogen
Musterlösung
- $$y_{\rm A}(t) = x (t) * h_{\rm A} (t) = \int_{ - \infty }^{ + \infty } {x ( \tau )} \cdot h_{\rm A} ( {t - \tau } ) \hspace{0.1cm}{\rm d}\tau.$$
Aufgrund der Rechteckfunktion und der Dauer $6T$ kann hierfür auch geschrieben werden:
- $$y_{\rm A}(t) = \frac{1}{6T}\cdot \int_{t-6T}^{t}x(\tau)\hspace{0.15cm} {\rm d}\tau.$$
Man erkennt, dass diese Gleichung für alle $t$ das gleiche Ergebnis $y_{\rm A}(t) \rm \underline{\: = 1V}$ liefert.
(2) Der Betragsfrequenzgang lautet $|H_{\rm A}(f)| = |{\rm si}(\pi \cdot f \cdot 6T)|.$ Dieser weist Nullstellen im Abstand $1/(6T)$ auf.
- Somit liegen auch bei $f_0$, $3f_0$, $5f_0$ usw. jeweils Nullstellen vor.
- Insbesondere gilt auch $|H_{\rm A}(f = f_0)| \underline{\: = 0}$.
- Vom Spektrum $X(f)$ bleibt somit nur der Gleichanteil $1 \ \rm V$ unverändert erhalten.
- Dagegen sind alle anderen Spektrallinien in $Y_{\rm A}(f)$ nicht mehr enthalten.
(3) Analog zur Teilaufgabe (1) kann hier für das Ausgangssignal geschrieben werden:
- $$y_{\rm B}(t) = \frac{1}{5T}\cdot \int_{t-5T}^{t}x(\tau)\hspace{0.15cm} {\rm d}\tau.$$
Es ergibt sich nun ein um den Mittelwert $1 \ \rm V$ schwankender dreieckförmiger Verlauf, wie aus der unteren Grafik zu ersehen ist.
- Da jeweils zwei Rechtecke und drei Lücken ins Integrationsintervall fallen, gilt zu den Zeiten $t = 0, t = 2T, t = 4T$, ...:
- $$y_{\rm B}(t) = \frac{2\,{\rm V} \cdot 2T }{5T} \hspace{0.15cm}\underline{= 0.8\,{\rm V} =y_{\rm B}(t=0) }.$$
- Dagegen sind bei $t = T, 3T, 5T,$ usw. jeweils drei Rechtecke und zwei Lücken zu berücksichtigen, und man erhält:
- $$y_{\rm B}(t) \underline{\: = 1.2 \: {\rm V}=y_{\rm B}(t=T)}.$$
(4) Die Betragsfunktion lautet nun allgemein bzw. bei den Frequenzen $f = f_0 = 1/(2T)$ und $f = 3f_0$:
- $$\begin{align*} |H_{\rm B}(f)| & = |{\rm si}(\pi \cdot f \cdot 5T)|, \\ |H_{\rm B}(f = f_0)| & = |{\rm si}(\pi \frac{5T}{2T})| = |{\rm si}(2.5\pi )| = \frac{1}{2.5 \pi} \hspace{0.15cm}\underline{= 0.127}, \\ |H_{\rm B}(f = 3f_0)| & = |{\rm si}(7.5\pi )| = \frac{1}{7.5 \pi} \hspace{0.15cm}\underline{=0.042}.\end{align*}$$
Interpretation:
- Die Spektralanteile des Rechtecksignals bei $f_0, 3f_0,$ usw. werden zwar nun nicht mehr unterdrückt, aber mit steigender Frequenz immer mehr abgeschwächt und zwar in der Form, dass der Rechteckverlauf in ein periodisches Dreiecksignal gewandelt wird. Der Gleichanteil bleibt auch hier unverändert.
- Beide Filter liefern also den Mittelwert des Eingangssignals. Beim vorliegenden Signal $x(t)$ ist für die Bestimmung des Mittelwertes das Filter $\rm A$ besser geeignet als das Filter $\rm B$, da bei Ersterem die Länge der Impulsantwort ein Vielfaches der Periodendauer $T_0 = 2T$ ist.
- Ist diese Bedingung – wie beim Filter $\rm B$ – nicht erfüllt, so überlagert sich dem Mittelwert noch ein (in diesem Beispiel dreieckförmiges) Fehlersignal.