Aufgaben:Aufgabe 3.13: Nochmals zu den Pfadgewichtsfunktionen: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
Zeile 1: Zeile 1:
 
{{quiz-Header|Buchseite=Kanalcodierung/Distanzeigenschaften und Fehlerwahrscheinlichkeitsschranken}}
 
{{quiz-Header|Buchseite=Kanalcodierung/Distanzeigenschaften und Fehlerwahrscheinlichkeitsschranken}}
  
[[Datei:P_ID2711__KC_A_3_13.png|right|Zur Reduktion des Zustandsübergangsdiagramms]]
+
[[Datei:P_ID2711__KC_A_3_13.png|right|frame|Zur Reduktion des Zustandsübergangsdiagramms]]
Auf der [[Kanalcodierung/Distanzeigenschaften_und_Fehlerwahrscheinlichkeitsschranken#Regeln_zur_Manipulation_des_Zustands.C3.BCbergangsdiagramms|Seite 4c]] des Theorieteils zu Kapitel 3.5 wurde für das Beispiel unseres Rate–1/2–Standardcodes mit Gedächtnis $m = 2$ und der Übertragungsfunktionsmatrix
+
Auf der Seite [[Kanalcodierung/Distanzeigenschaften_und_Fehlerwahrscheinlichkeitsschranken#Regeln_zur_Manipulation_des_Zustands.C3.BCbergangsdiagramms|Regeln zur Manipulation des Zustandsübergangsdiagramms]] wurde für das Beispiel unseres Rate–1/2–Standardcodes mit Gedächtnis $m = 2$ und der Übertragungsfunktionsmatrix
 
:$${\boldsymbol{\rm G}}(D) = \big ( 1 + D + D^2\hspace{0.05cm},\hspace{0.1cm} 1  + D^2 \hspace{0.05cm}\big )$$
 
:$${\boldsymbol{\rm G}}(D) = \big ( 1 + D + D^2\hspace{0.05cm},\hspace{0.1cm} 1  + D^2 \hspace{0.05cm}\big )$$
  
 
die Berechnung der Pfadgewichtsfunktionen sehr ausführlich beschrieben. Als Ergebnisse wurden genannt:
 
die Berechnung der Pfadgewichtsfunktionen sehr ausführlich beschrieben. Als Ergebnisse wurden genannt:
:$$T_{\rm enh}(X, U) \hspace{-0.2cm} \ = \ \hspace{-0.2cm}  \frac{U\hspace{-0.05cm} X^5}{1- 2U\hspace{-0.05cm}X}  =$$
+
:$$T_{\rm enh}(X, U) \hspace{-0.2cm} \ = \ \hspace{-0.2cm}  \frac{U\hspace{-0.05cm} X^5}{1- 2U\hspace{-0.05cm}X}  =U\hspace{-0.05cm}X^5 \cdot \left [ 1 + (2U\hspace{-0.08cm}X) + (2U\hspace{-0.08cm}X)^2 + \text{...} \hspace{0.05cm} \right ] \hspace{0.01cm},$$
:$$\ = \ \hspace{-0.2cm} U\hspace{-0.05cm}X^5 \cdot \left [ 1 + (2U\hspace{-0.08cm}X) + (2U\hspace{-0.08cm}X)^2 + ...  \hspace{0.05cm} \right ] \hspace{0.01cm},$$
+
:$$T(X) \hspace{-0.2cm} \ = \ \hspace{-0.2cm}  \frac{X^5}{1- 2X}  =  X^5 \cdot \left [ 1 + (2X) + (2X)^2 + \text{...} \hspace{0.05cm} \right ] \hspace{0.05cm}.$$
:$$T(X) \hspace{-0.2cm} \ = \ \hspace{-0.2cm}  \frac{X^5}{1- 2X}  =$$
 
:$$\ = \ \hspace{-0.2cm} X^5 \cdot \left [ 1 + (2X) + (2X)^2 + ... \hspace{0.05cm} \right ] \hspace{0.05cm}.$$
 
  
 
Nun sollen die gleichen Berechnungen für den [[Kanalcodierung/Algebraische_und_polynomische_Beschreibung#Systematische_Faltungscodes|äquivalenten systematischen Code]] mit der Übertragungsfunktionsmatrix
 
Nun sollen die gleichen Berechnungen für den [[Kanalcodierung/Algebraische_und_polynomische_Beschreibung#Systematische_Faltungscodes|äquivalenten systematischen Code]] mit der Übertragungsfunktionsmatrix
Zeile 16: Zeile 14:
 
durchgeführt werden.
 
durchgeführt werden.
  
Die Grafik zeigt das Zustandsübergangsdiagramm (A) und die Struktur des reduzierten Diagramms (B), wobei die Übergänge mit $A(X, \, U), \ ... \ , \ G(X, \, U)$ allgemein bezeichnet sind. In der Teilaufgabe (1) sollen diese Abkürzungen an das Zustandsübergangsdiagramm (A) angepasst werden.
+
Die Grafik zeigt das Zustandsübergangsdiagramm '''(A)''' und die Struktur des reduzierten Diagramms '''(B)''', wobei die Übergänge mit $A(X, \, U), \ \text{...}\ , \ G(X, \, U)$ allgemein bezeichnet sind. In der Teilaufgabe (1) sollen diese Abkürzungen an das Zustandsübergangsdiagramm '''(A)''' angepasst werden.
  
''Hinweis:''  
+
 
* Die Aufgabe bezieht sich auf das Kapitel [[Kanalcodierung/Distanzeigenschaften_und_Fehlerwahrscheinlichkeitsschranken| Distanzeigenschaften und Fehlerwahrscheinlichkeitsschranken]].  
+
 
* Zur Lösung der Teilaufgaben (b) und (c) verweisen wir hier nochmals auf die [[Kanalcodierung/Distanzeigenschaften_und_Fehlerwahrscheinlichkeitsschranken#Regeln_zur_Manipulation_des_Zustands.C3.BCbergangsdiagramms| Seite 4c]] im Theorieteil.
+
 
 +
 
 +
 
 +
''Hinweise:''  
 +
* Die Aufgabegehört zum Kapitel [[Kanalcodierung/Distanzeigenschaften_und_Fehlerwahrscheinlichkeitsschranken| Distanzeigenschaften und Fehlerwahrscheinlichkeitsschranken]].  
 +
* Zur Lösung der Teilaufgaben (2) und (3) verweisen wir hier nochmals auf die Seite [[Kanalcodierung/Distanzeigenschaften_und_Fehlerwahrscheinlichkeitsschranken#Regeln_zur_Manipulation_des_Zustands.C3.BCbergangsdiagramms|Regeln zur Manipulation des Zustandsübergangsdiagramms]] im Theorieteil.
  
  
Zeile 39: Zeile 42:
 
|type="[]"}
 
|type="[]"}
 
- $T_{\rm enh}(X, \, U) = UX^5 \ / \ (1 \, –2UX)$.
 
- $T_{\rm enh}(X, \, U) = UX^5 \ / \ (1 \, –2UX)$.
- $T_{\rm enh}(X, \, U) = UX^5 + 2 U^2X^6 + 4U^3X^7 + 8U^4X^8 + \ ... $,
+
- $T_{\rm enh}(X, \, U) = UX^5 + 2 U^2X^6 + 4U^3X^7 + 8U^4X^8 + \ \text{...}$,
 
+ Keiner der Vorschläge ist richtig.
 
+ Keiner der Vorschläge ist richtig.
  
Zeile 45: Zeile 48:
 
|type="[]"}
 
|type="[]"}
 
+ $T(X) = X^5 \ / \ (1 \, –2X)$.
 
+ $T(X) = X^5 \ / \ (1 \, –2X)$.
+ $T(X) = X^5 + 2X^6 + 4X^7 + 8X^8 + \ ... $
+
+ $T(X) = X^5 + 2X^6 + 4X^7 + 8X^8 + \ \text{...} $
 
- Keiner der Vorschläge ist richtig.
 
- Keiner der Vorschläge ist richtig.
 
</quiz>
 
</quiz>

Version vom 23. Januar 2018, 11:36 Uhr

Zur Reduktion des Zustandsübergangsdiagramms

Auf der Seite Regeln zur Manipulation des Zustandsübergangsdiagramms wurde für das Beispiel unseres Rate–1/2–Standardcodes mit Gedächtnis $m = 2$ und der Übertragungsfunktionsmatrix

$${\boldsymbol{\rm G}}(D) = \big ( 1 + D + D^2\hspace{0.05cm},\hspace{0.1cm} 1 + D^2 \hspace{0.05cm}\big )$$

die Berechnung der Pfadgewichtsfunktionen sehr ausführlich beschrieben. Als Ergebnisse wurden genannt:

$$T_{\rm enh}(X, U) \hspace{-0.2cm} \ = \ \hspace{-0.2cm} \frac{U\hspace{-0.05cm} X^5}{1- 2U\hspace{-0.05cm}X} =U\hspace{-0.05cm}X^5 \cdot \left [ 1 + (2U\hspace{-0.08cm}X) + (2U\hspace{-0.08cm}X)^2 + \text{...} \hspace{0.05cm} \right ] \hspace{0.01cm},$$
$$T(X) \hspace{-0.2cm} \ = \ \hspace{-0.2cm} \frac{X^5}{1- 2X} = X^5 \cdot \left [ 1 + (2X) + (2X)^2 + \text{...} \hspace{0.05cm} \right ] \hspace{0.05cm}.$$

Nun sollen die gleichen Berechnungen für den äquivalenten systematischen Code mit der Übertragungsfunktionsmatrix

$${\boldsymbol{\rm G}}(D) = \big ( 1 \hspace{0.05cm},\hspace{0.1cm} (1 + D^2)/(1 + D + D^2) \hspace{0.05cm}\big )$$

durchgeführt werden.

Die Grafik zeigt das Zustandsübergangsdiagramm (A) und die Struktur des reduzierten Diagramms (B), wobei die Übergänge mit $A(X, \, U), \ \text{...}\ , \ G(X, \, U)$ allgemein bezeichnet sind. In der Teilaufgabe (1) sollen diese Abkürzungen an das Zustandsübergangsdiagramm (A) angepasst werden.




Hinweise:


Fragebogen

1

Für welche Ausdrücke stehen die nachfolgenden Abkürzungen?

$A(X, \, U) = UX^2$,
$B(X, \, U) = UX$,
$C(X, \, U) = X$,
$D(X, \, U) = UX$,
$E(X, \, U) = X$,
$F(X, \, U) = 1$,
$G(X, \, U) = UX^2$.

2

Welche Ausdrücke gelten für die erweiterte Pfadgewichtsfunktion?

$T_{\rm enh}(X, \, U) = UX^5 \ / \ (1 \, –2UX)$.
$T_{\rm enh}(X, \, U) = UX^5 + 2 U^2X^6 + 4U^3X^7 + 8U^4X^8 + \ \text{...}$,
Keiner der Vorschläge ist richtig.

3

Welcher Ausdruck gilt für die „einfache” Pfadgewichtsfunktion?

$T(X) = X^5 \ / \ (1 \, –2X)$.
$T(X) = X^5 + 2X^6 + 4X^7 + 8X^8 + \ \text{...} $
Keiner der Vorschläge ist richtig.


Musterlösung

(1)  Der Übergang von $S_0$ nach $S_1$ ist durch „$1 \ | \ 11$” gekennzeichnet. Die Ausgangssequenz $\underline{x}_i = (11)$ wird durch $X^2$ ausgedrückt, das Eingangsbit $u_i = 1$ durch $U$. Gleiches Ergebnis erhält man für $G(X, \, U)$:

$$A(X, U) = G(X, U)= UX^2 \hspace{0.05cm}.$$

Ausgangssequenzen $\underline{x}_i = (01)$ sowie $\underline{x}_i = (10)$ werden beide mit $X$ markiert. Unter Berücksichtigung der Eingangsbits erhält man somit:

$$u_i = 1\hspace{-0.1cm}:\hspace{0.15cm} B(X, U) = D(X, U)= UX\hspace{0.05cm},\hspace{0.35cm} u_i = 0\hspace{-0.1cm}:\hspace{0.15cm} C(X, U) = E(X, U)= X \hspace{0.05cm}.$$

Der Übergang „$0 \ | \ 00$” von $S_2$ nach $S_1$ wird durch $F(X, \, U) = 1$ ausgedrückt. Im angepassten Diagramm (B) sind alle Übergänge eingezeichnet. Man erkennt, dass alle Lösungsvorschläge richtig sind.

Zur Reduktion des Zustandsübergangsdiagramms


(2)  Entsprechend der Vorgehensweise auf Seite 4c im Theorieteil wird zunächst der Übergang von $S_1$ nach $S_2$ via $S_3$ durch einen Ring zusammengefasst.

  • Man erhält für die rote Hinterlegung im Diagramm (B):
$$T_1(X, U) = \frac{A(X, U) \cdot B(X, U)}{1- C(X, U)} = \frac{X \cdot X}{1- U \cdot X} \hspace{0.05cm}.$$
  • Die beiden parallelen Übergänge entsprechend der blauen Hinterlegung im Diagramm (C) können wie folgt zusammengefasst werden:
$$T_2(X, U) \hspace{-0.15cm} \ = \ \hspace{-0.15cm} T_1(X, U) + B(X, U) =\frac{X^2}{1- U X}+ U X = \frac{X^2 + U- U^2X^2}{1- U X} \hspace{0.05cm}.$$
  • Die erweiterte Pfadgewichtsfunktion ergibt sich entsprechend Diagramm (D) als Rückkopplung:
$$T_{\rm enh}(X, U) = \frac{A(X, U) \cdot G(X, U)\cdot T_2(X, U)}{1- F(X, U) \cdot T_2(X, U)} = \frac{UX^2 \cdot UX^2\cdot \frac{X^2 + UX- U^2X^2}{1- U X}}{1- 1 \cdot \frac{X^2 + UX- U^2X^2}{1- U X}}\hspace{0.05cm}.$$

Dem Autor ist es auch nach mehreren Versuchen nicht gelungen, diesen Ausdruck zielführend weiter zu vereinfachen. Er tendiert zum Lösungsvorschlag 3 mit dem Zusatz „ohne Gewähr”. Dieses Ergebnis würde jedoch bedeuten, dass sich die erweiterte Pfadgewichtsfunktion des äquivalenten systematischen Codes von der des nichtsystematischen Codes unterscheidet. Wir werden diese Frage noch mit einem Fachmann klären.


(3)  Setzt man in der erweiterten Funktion $T_{\rm enh}(X, \, U)$ den Formalparameter $U = 1$, so erhält man

$$T(X) = \frac{X^4 \cdot \frac{X^2 + X- X^2}{1- X}}{1- \frac{X^2 + X- X^2}{1- X}}= \frac{X^5 }{1- X - X} = \frac{X^5 }{1- 2X} \hspace{0.05cm}.$$

Richtig ist somit der Lösungsvorschlag 1 und mit der Reihenentwicklung $1/(1 \, –x) = 1 + x + x^2 + \ ... \ $ auch der Lösungsvorschlag 2. Das heißt: Die einfache Pfadgewichtsfunktion stimmt bei beiden Codes überein.