Aufgaben:Aufgabe 3.6Z: Komplexe Exponentialfunktion: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
Zeile 3: Zeile 3:
 
}}
 
}}
  
[[Datei:P_ID518__Sig_Z_3_6_neu.png|right|Komplexe Exponentialfunktion]]
+
[[Datei:P_ID518__Sig_Z_3_6_neu.png|right|frame|Komplexe Exponentialfunktion]]
In Zusammenhang mit den [[Signaldarstellung/Unterschiede_und_Gemeinsamkeiten_von_TP-_und_BP-Signalen|Bandpass-Systemen]] wird oft mit einseitigen Spektren gearbeitet. In der Abbildung sehen Sie eine solche einseitige Spektralfunktion $\text{X(f)},dieeinkomplexesZeitsignal\text{x(t)}$ zur Folge hat.
+
In Zusammenhang mit den [[Signaldarstellung/Unterschiede_und_Gemeinsamkeiten_von_TP-_und_BP-Signalen|Bandpass-Systemen]] wird oft mit einseitigen Spektren gearbeitet. In der Abbildung sehen Sie eine solche einseitige Spektralfunktion X(f), die ein komplexes Zeitsignal x(t) zur Folge hat.
  
 
In der unteren Skizze ist X(f) in einen – bezüglich der Frequenz – geraden Anteil G(f) sowie einen ungeraden Anteil U(f) aufgespaltet.
 
In der unteren Skizze ist X(f) in einen – bezüglich der Frequenz – geraden Anteil G(f) sowie einen ungeraden Anteil U(f) aufgespaltet.
 +
 +
 +
 +
  
 
''Hinweise:''  
 
''Hinweise:''  
 
*Die Aufgabe gehört zum  Kapitel [[Signaldarstellung/Gesetzmäßigkeiten_der_Fouriertransformation|Gesetzmäßigkeiten der Fouriertransformation]].
 
*Die Aufgabe gehört zum  Kapitel [[Signaldarstellung/Gesetzmäßigkeiten_der_Fouriertransformation|Gesetzmäßigkeiten der Fouriertransformation]].
*Alle dort dargelegten Gesetzmäßigkeiten werden im Lernvideo [[Gesetzmäßigkeiten der Fouriertransformation (Dauer Teil 1: 5:57 – Teil 2: 5:55)]] an Beispielen verdeutlicht.
+
*Alle dort dargelegten Gesetzmäßigkeiten werden im Lernvideo [[Gesetzmäßigkeiten_der_Fouriertransformation_(Lernvideo)|Gesetzmäßigkeiten der Fouriertransformation]] an Beispielen verdeutlicht.
 
*Lösen Sie diese Aufgabe mit Hilfe des [[Signaldarstellung/Gesetzmäßigkeiten_der_Fouriertransformation#Zuordnungssatz|Zuordnungssatzes]] und des [[Signaldarstellung/Gesetzmäßigkeiten_der_Fouriertransformation#Verschiebungssatz|Verschiebungssatzes]].
 
*Lösen Sie diese Aufgabe mit Hilfe des [[Signaldarstellung/Gesetzmäßigkeiten_der_Fouriertransformation#Zuordnungssatz|Zuordnungssatzes]] und des [[Signaldarstellung/Gesetzmäßigkeiten_der_Fouriertransformation#Verschiebungssatz|Verschiebungssatzes]].
 
*Verwenden Sie für die beiden ersten Teilaufgaben die Signalparameter A=1V und f0=125kHz.
 
*Verwenden Sie für die beiden ersten Teilaufgaben die Signalparameter A=1V und f0=125kHz.

Version vom 17. Januar 2018, 17:36 Uhr

Komplexe Exponentialfunktion

In Zusammenhang mit den Bandpass-Systemen wird oft mit einseitigen Spektren gearbeitet. In der Abbildung sehen Sie eine solche einseitige Spektralfunktion X(f), die ein komplexes Zeitsignal x(t) zur Folge hat.

In der unteren Skizze ist X(f) in einen – bezüglich der Frequenz – geraden Anteil G(f) sowie einen ungeraden Anteil U(f) aufgespaltet.



Hinweise:


Fragebogen

1

Wie lautet die zu G(f) passende Zeitfunktion g(t)? Wie groß ist g(t=1μs)?

Re[g(t=1μs)]  =

 V
Im[g(t=1μs)]  =

 V

2

Wie lautet die zu U(f) passende Zeitfunktion u(t)? Wie groß ist u(t=1μs)?

Re[u(t=1μs)]  =

 V
Im[g(t=1μs)]  =

 V

3

Welche der Aussagen sind bezüglich des Signals x(t) zutreffend?

Das Signal lautet x(t)=Aej2πf0t.
In der komplexen Ebene dreht x(t) im Uhrzeigersinn.
In der komplexen Ebene dreht x(t) entgegen dem Uhrzeigersinn.
Für eine Umdrehung wird eine Mikrosekunde benötigt.


Musterlösung

1. G(f) ist die Spektralfunktion eines Cosinussignals mit der Periodendauer T0=1/f0=8μs:

g(t)=Acos(2πf0t).

Bei t=1μs ist der Signalwert gleich Acos(π/4):

  • Realteil Re[g(t=1μs)]=0.707V_,
  • Imaginärteil Im[g(t=1μs)]=0._.


2. Ausgehend von der Fourierkorrespondenz

Aδ(f)A

erhält man durch zweimalige Anwendung des Verschiebungssatzes (im Frequenzbereich):

U(f)=A/2δ(ff0)A/2δ(f+f0)u(t)=A/2(ej2πf0tej2πf0t).

Nach dem Satz von Euler kann hierfür auch geschrieben werden:

u(t)=jAsin(2πf0t).
  • Der Realteil dieses Signals ist stets 0.
  • Bei t=1μs gilt für den Imaginärteil: Im[g(t=1μs)]=0.707V_.


3. Wegen X(f)=G(f)+U(f) gilt auch:

x(t)=g(t)+u(t)=Acos(2πf0t)+jAsin(2πf0t).

Dieses Ergebnis kann mit dem Satz von Euler wie folgt zusammengefasst werden:

x(t)=Aej2πf0t.

Richtig sind die vorgegebenen Alternativen 1 und 3.

  • Das Signal dreht in der komplexen Ebene in mathematisch positiver Richtung, also entgegen dem Uhrzeigersinn.
  • Für eine Umdrehung benötigt der „Zeiger” die Periodendauer T0=1/f0=8μs.