Aufgaben:Aufgabe 4.4Z: Störabstand bei PCM: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
(kein Unterschied)

Version vom 3. Januar 2018, 15:28 Uhr

Störabstand von PCM 30/32 im Vergleich zur ZSB–Amplitudenmodulation

Die Grafik zeigt den Sinken–Störabstand $10 · \lg \ ρ_v$ für die Pulscodemodulation (PCM) im Vergleich zur analogen Zweiseitenband–Amplitudenmodulation, abgekürzt mit ZSB–AM. Für letztere gilt $ρ_v = ξ$, wobei die Leistungskenngröße

$$\xi = \frac{\alpha^2 \cdot P_{\rm S}}{N_0 \cdot f_{\rm N}} \hspace{0.05cm}.$$

folgende Systemparameter zusammenfasst:

  • den frequenzunabhängigen Dämpfungsfaktor $α$ des Übertragungskanals,
  • die Leistung $P_{\rm S}$ des Sendsignals $s(t)$, auch kurz Sendeleistung genannt,
  • die Nachrichtenfrequenz $f_{\rm N}$ (Bandbreite) des cosinusförmigen Quellensignals $q(t)$,
  • die Rauschleistungsdichte $N_0$ des AWGN–Rauschens.


Für das PCM–System wurde auf der Seite Abschätzung der SNR-Degradation durch Bitfehler folgende Näherung für das Sinken–SNR angegeben, die auch Übertragungsfehler aufgrund des AWGN–Rauschens berücksichtigt:

$$ \rho_{\upsilon}= \frac{1}{ 2^{-2N } + 4 \cdot p_{\rm B}} \hspace{0.05cm}.$$

Hierbei bezeichnet $N$ die Anzahl der Bit pro Abtastwert und $p_{\rm B}$ die Bitfehlerwahrscheinlichkeit. Da $ξ$ bei digitaler Modulation auch als die Signalenergie pro Bit  bezogen auf die Rauschleistungsdichte ($E_{\rm B}/N_0$) interpretiert werden kann, gilt mit dem komplementären Gaußschen Fehlersignal ${\rm Q}(x)$ näherungsweise:

$$ p_{\rm B}= {\rm Q} \left ( \sqrt{2 \xi }\right ) \hspace{0.05cm}.$$


Hinweise:


Fragebogen

1

Wieviele Bit pro Abtastwert   ⇒   $N = N_1$ verwendet das betrachtete PCM–System?

$N_1 \ = \ $

2

Wieviele Bit pro Abtastwert   ⇒   $N = N_2$ müsste man verwenden, damit $10 · \lg \ ρ_v > 64 \ \rm dB$ (Musikqualität) erreicht wird?

$N_2 \ = \ $

3

Welche (logarithmierte) Leistungskenngröße $ξ_{40\ \rm dB}$ ist erforderlich, damit bei 8–Bit–PCM der Sinkenstörabstand gleich $40\ \rm dB$ ist?

$10 · \lg \ ξ_{40\ \rm dB} \ = \ $

$\ \rm dB$

4

Um welchen Faktor könnte man bei PCM die Sendeleistung gegenüber der ZSB–AM reduzieren, um trotzdem $10 · \lg \ ρ_v = 40\ \rm dB$ zu erreichen?

$K_\text{AM → PCM} \ = \ $

5

Welche Bitfehlerwahrscheinlichkeit $p_{\rm B}$ ergibt sich für $10 · \lg \ ξ = 6\ \rm dB$ und $N = N_1$   ⇒   Ergebnis zu (1)?

$p_{\rm B} \ = \ $

$\ \%$

6

Welches SNR würde sich bei gleichem $ξ$ mit einer 3–Bit–PCM   ⇒   $N = 3$ ergeben?

$10 · \lg \ ρ_v \ = \ $

$\ \rm dB$


Musterlösung

(1)  Der horizontale Abschnitt der PCM–Kurve wird allein durch das Quantisierungsrauschen bestimmt. Hier gilt mit der Quantisierungsstufenzahl $M = 2^N$:

$$ \rho_{v} (\xi \rightarrow \infty) = \rho_{\rm Q} = M^2 = 2^{2N} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} 10 \cdot {\rm lg}\hspace{0.1cm}\rho_{v} \approx 6\,{\rm dB} \cdot N\hspace{0.05cm}.$$

Aus dem ablesbaren Störabstand $10 · \lg \ ρ_v ≈ 48 \ \rm dB$ folgt daraus $N_1\hspace{0.15cm}\underline { = 8}$ Bit pro Abtastwert und für die Quantisierungsstufenzahl $M = 256$.


(2)  Aus der obigen Näherung erhält man für $N_2\hspace{0.15cm}\underline { = 11}$ Bit pro Abtastwert   ⇒   $M = 2048$ den Störabstand $66 \ \rm dB$.

  • Mit $N = 10$   ⇒   $M = 1024$ erreicht man nur ca. $60 \ \rm dB$.
  • Bei der Compact Disc (CD) werden die PCM–Parameter $N = 16$   ⇒   $M = 65536$   ⇒   $10 · \lg \ ρ_v > 96 \ \rm dB$ verwendet.


(3)  Bei Zweiseitenband–Amplitudenmodulation wären hierfür $10 · \lg \ ξ = 40\ \rm dB$ erforderlich. Wie aus der Grafik auf der Angabenseite hervorgeht, ist dieser Abszissenwert für die vorgegebene PCM um $30 dB$ geringer ⇒ $10 · \lg \ ξ_{40\ \rm dB}\hspace{0.15cm}\underline { = 10 \ \rm dB}$.


(4)  Der logarithmische Wert $30 \ \rm dB$ entspricht einer um den $Faktor 10^3\hspace{0.15cm}\underline { = 1000}$ reduzierten Leistung.


(5)  Aus der Grafik auf der Angabenseite erkennt man, dass der Abszissenwert $10 · \lg \ ξ= 6 \ \rm dB$ den Störabstand $20 \ \rm dB$ zur Folge hat. Aus $10 · \lg \ ρ_v = 20 \ \rm dB$ folgt $ρ_v = 100$ und damit weiter (mit $N = N_1 = 8$):

$$\rho_{\upsilon}= \frac{1}{ 2^{-2N } + 4 \cdot p_{\rm B}} \approx \frac{1}{ 1.5 \cdot 10^{-5} + 4 \cdot p_{\rm B}} = 100 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} p_{\rm B} = \frac{0.01 - 1.5 \cdot 10^{-5}}{ 4} \hspace{0.15cm}\underline {\approx 2.5\%} \hspace{0.05cm}.$$

(6)  Bei gleichem $ξ$ ist die Bitfehlerwahrscheinlichkeit weiterhin $p_{\rm B} = 0.025$ gerechnet werden. Damit erhält man mit $N = 3$ (Bit pro Abtastwert):

$$\rho_{\upsilon}= \frac{1}{ 2^{-6 } + 4 \cdot p_{\rm B}} = \frac{1}{ 0.015625 + 0.01} \approx 39 \hspace{0.3cm} \Rightarrow \hspace{0.3cm}10 \cdot {\rm lg} \hspace{0.15cm}\rho_{\upsilon}\hspace{0.15cm}\underline {\approx 15.9\,{\rm dB}} \hspace{0.05cm}.$$

Weiter ist anzumerken:

  • Bei nur drei Bit pro Abtastwert ist die Quantisierungsrauschleistung ($P_{\rm Q} = 0.015625$) schon größer als die Fehlerrauschleistung ($P_{\rm F} = 0.01$).
  • Durch Erhöhung der Sendeleistung könnte wegen der Quantisierung der Sinkenstörabstand maximal $10 · \lg \ ρ_v =18 \ \rm dB$ betragen, wenn keine Bitfehler vorkommen ($P_{\rm F} = 0$).