Aufgabe 2.3: QAM–Signalraumbelegung: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
Zeile 121: Zeile 121:
 
Die abschließende Grafik zeigt alle Signalraumpunkte des ersten Quadranten, wobei die Punkte mit den Dezimalwerten der Binärfolgen beschriftet sind. Die dünn eingezeichneten Linien geben eine zweite Vorgehensweise zur Bestimmung der Signalraumbelegung an, die im [[Beispiele_von_Nachrichtensystemen/xDSL_als_Übertragungstechnik#M.C3.B6gliche_QAM.E2.80.93Signalraumkonstellationen|Theorieteil]] erläutert wird.
 
Die abschließende Grafik zeigt alle Signalraumpunkte des ersten Quadranten, wobei die Punkte mit den Dezimalwerten der Binärfolgen beschriftet sind. Die dünn eingezeichneten Linien geben eine zweite Vorgehensweise zur Bestimmung der Signalraumbelegung an, die im [[Beispiele_von_Nachrichtensystemen/xDSL_als_Übertragungstechnik#M.C3.B6gliche_QAM.E2.80.93Signalraumkonstellationen|Theorieteil]] erläutert wird.
  
 
+
[[P_ID1978__Bei_A_2_3_Loesung.png|right|frame|256-QAM-Belegung]]
  
 
[[Category:Aufgaben zu Beispiele von Nachrichtensystemen|^2.3 xDSL als Übertragungstechnik
 
[[Category:Aufgaben zu Beispiele von Nachrichtensystemen|^2.3 xDSL als Übertragungstechnik
  
 
^]]
 
^]]

Version vom 18. Dezember 2017, 12:14 Uhr

QAM-Signalraumbelegung

Bei ADSL (Asymmetric Digital Subscriber Line) sind verschiedene Übertragungsverfahren anwendbar. Sowohl bei QAM als auch bei CAP und DMT findet dabei eine Signalraumzuordnung statt.

Die Grafik zeigt den ersten Quadranten der betrachteten Signalraumzuordnung. Auf die farblich markierten Punkte wird in der Aufgabe Bezug genommen. Anzumerken ist:

  • Die Inphase– und Quadraturkoeffizienten $(a_{\rm I}, a_{\rm Q})$ können hierbei jeweils die Werte $1, 3, ... , 15$ annehmen. In anderen Quadranten sind auch die negativen Werte $–1, –3, ... , –15$ möglich.
  • Jeweils $b \rm Bit$ werden zu einem Signalraumpunkt zusammengefasst, der durch die Koordinaten $a_{\rm I}$ und $a_{\rm Q}$ gekennzeichnet wird.
  • Wird eine Bitfolge $(q_{b–1}, q_{b–2}, ... , q_{0})$ übertragen, so bezeichnen die MSB (Most Significant Bits) $q_{b–1}$ und $q_{b–2}$ die Vorzeichen von $a_{\rm I}$ und $a_{\rm Q}$, und damit auch den Quadranten.
  • Ist $q_{b–1} = 0$, so ist $a_{\rm I}$ positiv. Dagegen weist $q_{b–1} = 1$ auf ein negatives $a_{\rm I}$ hin. Der gleiche Zusammenhang besteht zwischen $q_{b–2}$ und $a_{\rm Q}$.
  • Der Inphase–Anteil $a_{\rm I}$ ergibt sich als Dezimalwert der Binärzahl $(q_{b–1}, q_{b–3}, ... , q_{1}, 1)$. Negative Zahlen werden durch das Zweierkomplement dargestellt.
  • Der Quadratur–Anteil $a_{\rm Q}$ ergibt sich als Dezimalwert der Binärzahl $(q_{b–2}, q_{b–4}, ... , q_{0}, 1)$. Negative Zahlen werden auch hier durch das Zweierkomplement dargestellt.

Ziel dieser Aufgabe ist es, gegebene Bitfolgen dem richtigen Signalraumpunkt zuzuordnen. Die umgekehrte Zuordnung wird ebenfalls demonstriert.

Hinweis:

Die Aufgabe gehört zum Themengebiet von Kapitel xDSL als Übertragungstechnik.



Fragebogen

1

Um welche Konstellationsgröße handelt es sich im betrachteten Beispiel?

8–QAM,
16–QAM,
64–QAM,
256–QAM.

2

Wie viele Bit werden zu einem Signalraumpunkt zusammengefasst?

$b \ = \ $

3

Welche MSB–Werte gelten für den in der Grafik dargesellten Quadranten?

$q_{7} = \boldsymbol{0}, q_{6} = \boldsymbol{0}\,$
$q_{7} = \boldsymbol{1}, q_{6} = \boldsymbol{0},$
$q_{7} = \boldsymbol{1}, q_{6} = \boldsymbol{1},$
$q_{7} = \boldsymbol{0}, q_{6} = \boldsymbol{1}.$

4

Wie lauten die Koordinaten der Bitfolge $\boldsymbol{10010011}$?

$ a_{I} \ = \ $

$ a_{Q} \ = \ $

5

Welche Bitfolge ist dem roten Punkt zugeordnet?

$\boldsymbol{00001011,}$
$\boldsymbol{00010011,}$
$\boldsymbol{00010110,}$
$\boldsymbol{00101110.}$

6

Welche Bitfolge ist dem blauen Punkt zugeordnet?

$\boldsymbol{00001011,}$
$\boldsymbol{00010011,}$
$\boldsymbol{00010110,}$
$\boldsymbol{00101110.}$

7

Liegt hier eine Gray–Codierung vor?

Nein.
Ja.

8

Welche Aussagen gelten hinsichtlich Gray–Codierung und Bitfehlerrate?

Gray–Codierung verkleinert die Bitfehlerrate.
Gray–Codierung vergrößert die Bitfehlerrate.
Gray–Codierung hat keinen Einfluss auf die Bitfehlerrate.


Musterlösung

(1)  Der erste Quadrant umfasst $8 \cdot 8\underline{ = 64}$ mögliche Punkte. Damit handelt es sich um eine $4 \cdot 64 = 256–\rm QAM.$

(2)  Es muss $2^b = 256$ gelten. Daraus folgt: $\underline{b = 8}$.

(3)  Die $\underline{ {\rm MSB} \ \boldsymbol{00}}$ zeigen an, dass $a_{\rm I}$ und $a_{\rm Q}$ positiv sind und markieren somit den hier betrachteten ersten Quadranten. Entsprechend gilt: $\boldsymbol{10}: 2.$ Quadrant, $\boldsymbol{11}: 3$. Quadrant, $\boldsymbol{01}: 4$. Quadrant.

(4)  Entsprechend der Angabe ist der Inphasenanteil negativ $(q_{7} = \boldsymbol{1})$. Aus $\boldsymbol{10011}_{\rm binär} = 19_{\rm dez}$ ergibt sich das Zweierkomplement 19 – 32 = –13. Der Quadraturanteil ergibt sich aus $\boldsymbol{01011}_{\rm binär} = 11:$

$$\underline{a_{\rm I} = -13,\hspace{0.2cm}a_{\rm Q} = +11} \hspace{0.05cm}.$$

(5)  Entsprechend der Angabe muss gelten:

$ \ \ \ \ \ a_{\rm I} = 3: \ \ \ \ \ q_{5} = \boldsymbol{0}, \ q_{3} = \boldsymbol{0}, \ q_{1} = \boldsymbol{1} \Rightarrow \boldsymbol{0011}_{\rm binär} = 3,$

$ \ \ \ \ \ a_{\rm Q} = 13: \ \ \ \ \ q_{4} = \boldsymbol{1}, q_{2} = \boldsymbol{1}, q_{0} = \boldsymbol{0} \Rightarrow \boldsymbol{1101}_{\rm binär} = 13.$ Daraus folgt insgesamt: $q_{7}, q_{6}, q_{5}, ... , q_{1}, q_{0} = \boldsymbol{00010110}.$

Richtig ist somit der 3. Lösungsvorschlag.


(6)  Gegenüber der letzten Aufgabe gibt es keine Änderung bezüglich $a_{\rm I}$. Dagegen ist nun

$a_{\rm Q} = 11: q_{4} = \boldsymbol{1}, q_{2} = \boldsymbol{0}, q_{0} = \boldsymbol{1} \Rightarrow \boldsymbol{1011}_{\rm binär} = 11 \Rightarrow q_{7}, q_{6}, q_{5}, ... , q_{1}, q_{0} = \boldsymbol{00010011}.$

Richtig ist demnach der Lösungsvorschlag 2.

(7)  Es liegt keine Gray–Codierung vor, da sich die beiden benachbarten Signalraumpunkte „rot” und „blau” um mehr als ein $\rm Bit$ unterscheiden.

(8)  Richtig ist hier der Lösungsvorschlag 1. Bei Gray–Codierung führt jeder Symbolfehler nur zu einem einzigen Bitfehler und für die Bitfehlerwahrscheinlichkeit erhält man $p_{\rm B} = p_{\rm S}/b$, da die Anzahl der übertragenen $\rm Bits$ um den Faktor $b$ größer ist als die Anzahl der QAM–Symbole. Bei anderer Codierung wird dieser Minimalwert nicht erreicht.

Die abschließende Grafik zeigt alle Signalraumpunkte des ersten Quadranten, wobei die Punkte mit den Dezimalwerten der Binärfolgen beschriftet sind. Die dünn eingezeichneten Linien geben eine zweite Vorgehensweise zur Bestimmung der Signalraumbelegung an, die im Theorieteil erläutert wird.

right|frame|256-QAM-Belegung