Aufgaben:Aufgabe 1.2: Signalklassifizierung: Unterschied zwischen den Versionen
Aus LNTwww
Zeile 45: | Zeile 45: | ||
{Berechnen Sie die auf den Einheitswiderstand $R = 1 Ω$ bezogene Energie <math>E_2</math> des Signals <math>x_2(t)</math>. Wie groß ist die Leistung <math>P_2</math> dieses Signals? | {Berechnen Sie die auf den Einheitswiderstand $R = 1 Ω$ bezogene Energie <math>E_2</math> des Signals <math>x_2(t)</math>. Wie groß ist die Leistung <math>P_2</math> dieses Signals? | ||
|type="{}"} | |type="{}"} | ||
− | <math>E_2 = </math>{ 0.5 5% } $ | + | <math>E_2 \ = \ </math>{ 0.5 5% } $\ \cdot 10^{-3}\,\text{V}^2\text{s}$ |
− | <math>P_2 = </math>{ 0. } $ | + | <math>P_2 \ = \ </math>{ 0. } $\ \cdot \text{Vs}$ |
{Welche der Signale besitzen eine endliche Energie? | {Welche der Signale besitzen eine endliche Energie? | ||
Zeile 66: | Zeile 66: | ||
− | '''(2)''' Ein Signal bezeichnet man als kausal, wenn es für Zeiten $t < 0$ nicht existiert bzw. identisch $0$ ist. Dies gilt für die | + | '''(2)''' Richtig sind die <u>Lösungsvorschläge 1 und 2</u>: |
+ | *Ein Signal bezeichnet man als kausal, wenn es für Zeiten $t < 0$ nicht existiert bzw. identisch $0$ ist. Dies gilt für die Signale <math>x_1(t)</math> und <math>x_2(t)</math>. | ||
+ | *Dagegen gehört <math>x_3(t)</math> zur Klasse der akausalen Signale. | ||
Zeile 73: | Zeile 75: | ||
::<math>E_2=\lim_{T_{\rm M}\to\infty}\int^{T_{\rm M}/2}_{-T_{\rm M}/2}x^2_2(t)\,\hspace{0.1cm}{\rm d}t.</math> | ::<math>E_2=\lim_{T_{\rm M}\to\infty}\int^{T_{\rm M}/2}_{-T_{\rm M}/2}x^2_2(t)\,\hspace{0.1cm}{\rm d}t.</math> | ||
− | Im vorliegenden Fall ist die untere Integrationsgrenze $0$ und | + | Im vorliegenden Fall ist die untere Integrationsgrenze $0$ und die obere Integrationsgrenze $+\infty$. Man erhält: |
::<math>E_2=\int^\infty_0 (1{\rm V})^2\cdot{\rm e}^{-2t/(1\rm ms)}\,\hspace{0.1cm}{\rm d}t = 5 \cdot 10^{-4}\hspace{0.1cm} \rm V^2s \hspace{0.15cm}\underline{= 0.5 \cdot 10^{-3}\hspace{0.1cm} \rm V^2s}. </math> | ::<math>E_2=\int^\infty_0 (1{\rm V})^2\cdot{\rm e}^{-2t/(1\rm ms)}\,\hspace{0.1cm}{\rm d}t = 5 \cdot 10^{-4}\hspace{0.1cm} \rm V^2s \hspace{0.15cm}\underline{= 0.5 \cdot 10^{-3}\hspace{0.1cm} \rm V^2s}. </math> | ||
− | Bei endlicher Energie ist die zugehörige Leistung stets verschwindend klein. Daraus folgt $P_2 = 0$. | + | Bei endlicher Energie ist die zugehörige Leistung stets verschwindend klein. Daraus folgt $P_2\hspace{0.15cm}\underline{ = 0}$. |
− | '''(4)''' Richtig sind | + | |
+ | '''(4)''' Richtig sind die <u>Lösungsvorschläge 2 und 3</u>: | ||
*Wie bereits in der letzten Teilaufgabe berechnet wurde, besitzt <math>x_2(t)</math> eine endliche Energie: | *Wie bereits in der letzten Teilaufgabe berechnet wurde, besitzt <math>x_2(t)</math> eine endliche Energie: | ||
:$$E_2= 0.5 \cdot 10^{-3}\hspace{0.1cm} {\rm V^2}s. $$ | :$$E_2= 0.5 \cdot 10^{-3}\hspace{0.1cm} {\rm V^2}s. $$ |
Version vom 13. Dezember 2017, 14:31 Uhr
Nebenstehend sind drei Signalverläufe dargestellt:
- Das Signal \(x_1(t)\) wird zum Zeitpunkt $t = 0$ eingeschaltet und besitzt für $t > 0$ den Wert $1\,\text{V}$.
- Das rote Signal \(x_2(t)\) ist für $t < 0$ identisch $0$, springt bei $t = 0$ auf $1\,\text{V}$ an und fällt danach mit der Zeitkonstanten $1\,\text{ms}$ ab. Für $t > 0$ gilt:
- \[x_2(t) = 1\,\text{V} \cdot {\rm e}^{- {t}/(1\,\text{ms})}.\]
- Entsprechend gilt für das grün dargestellte Signal für alle Zeiten $t$:
- \[x_3(t) = 1\,\text{V} \cdot {\rm e}^{- {|t|}/(1\,\text{ms})}.\]
Diese drei Signale sollen nun von Ihnen nach den folgenden Kriterien klassifiziert werden:
- deterministisch bzw. stochastisch,
- kausal bzw. akausal,
- energiebegrenzt bzw. leistungsbegrenzt,
- wertkontinuierlich bzw. wertdiskret,
- zeitkontinuierlich bzw. zeitdiskret.
Hinweise:
- Die Aufgabe geört zum Kapitel Klassifizierung von Signalen.
- Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
Fragebogen
Musterlösung
(1) Zutreffend sind also die Lösungsvorschläge 1 und 3:
- Alle Signale können in analytischer Form vollständig beschrieben werden; sie sind deshalb auch deterministisch.
- Alle Signale sind außerdem für alle Zeiten $t$ eindeutig definiert, nicht nur zu gewissen Zeitpunkten. Deshalb handelt es sich stets um zeitkontinuierliche Signale.
- Die Signalamplituden von \(x_2(t)\) und \(x_3(t)\) können alle beliebigen Werte zwischen $0$ und $1\,\text{V}$ annehmen; sie sind deshalb wertkontinuierlich.
- Dagegen sind beim Signal \(x_1(t)\) nur die zwei Signalwerte $0$ und $1\,\text{V}$ möglich, und es liegt ein wertdiskretes Signal vor.
(2) Richtig sind die Lösungsvorschläge 1 und 2:
- Ein Signal bezeichnet man als kausal, wenn es für Zeiten $t < 0$ nicht existiert bzw. identisch $0$ ist. Dies gilt für die Signale \(x_1(t)\) und \(x_2(t)\).
- Dagegen gehört \(x_3(t)\) zur Klasse der akausalen Signale.
(3) Nach der allgemeinen Definition gilt:
- \[E_2=\lim_{T_{\rm M}\to\infty}\int^{T_{\rm M}/2}_{-T_{\rm M}/2}x^2_2(t)\,\hspace{0.1cm}{\rm d}t.\]
Im vorliegenden Fall ist die untere Integrationsgrenze $0$ und die obere Integrationsgrenze $+\infty$. Man erhält:
- \[E_2=\int^\infty_0 (1{\rm V})^2\cdot{\rm e}^{-2t/(1\rm ms)}\,\hspace{0.1cm}{\rm d}t = 5 \cdot 10^{-4}\hspace{0.1cm} \rm V^2s \hspace{0.15cm}\underline{= 0.5 \cdot 10^{-3}\hspace{0.1cm} \rm V^2s}. \]
Bei endlicher Energie ist die zugehörige Leistung stets verschwindend klein. Daraus folgt $P_2\hspace{0.15cm}\underline{ = 0}$.
(4) Richtig sind die Lösungsvorschläge 2 und 3:
- Wie bereits in der letzten Teilaufgabe berechnet wurde, besitzt \(x_2(t)\) eine endliche Energie:
- $$E_2= 0.5 \cdot 10^{-3}\hspace{0.1cm} {\rm V^2}s. $$
- Die Energie des Signals \(x_3(t)\) ist doppelt so groß, da nun der Zeitbereich $t < 0$ den gleichen Beitrag liefert wie der Zeitbereich $t > 0$. Also ist $E_3= 10^{-3}\hspace{0.1cm} {\rm V^2s}$.
- Beim Signal \(x_1(t)\) divergiert das Energieintegral: $E_1 \rightarrow \infty$. Dieses Signal weist eine endliche Leistung auf ⇒ $P_1= 0.5 \hspace{0.1cm} {\rm V}^2$ und ist dementsprechend leistungsbegrenzt.
- Das Ergebnis berücksichtigt, dass das Signal \(x_1(t)\) in der Hälfte der Zeit ($t < 0$) identisch $0$ ist.