Aufgaben:Aufgabe 1.4: Maximum–Likelihood–Entscheidung: Unterschied zwischen den Versionen
Aus LNTwww
Wael (Diskussion | Beiträge) |
Wael (Diskussion | Beiträge) |
||
Zeile 55: | Zeile 55: | ||
===Musterlösung=== | ===Musterlösung=== | ||
{{ML-Kopf}} | {{ML-Kopf}} | ||
− | '''1 | + | '''(1)''' Die Hamming–Distanzen zwischen dem spezifischen Empfangswort y_=(1,0,0,0,1) und den vier möglichen Codeworten x_i ergeben sich wie folgt: |
+ | :dH(y_,x_0)=2,dH(y_,x_1)=4,dH(y_,x_2)=1,dH(y_,x_3)=3. | ||
+ | Entschieden wird sich für die Folge mit der geringsten Hamming–Distanz ⇒ <u>Antwort 3</u>. | ||
+ | |||
'''2.''' | '''2.''' | ||
'''3.''' | '''3.''' |
Version vom 28. November 2017, 18:52 Uhr
Wir betrachten das digitale Übertragungssystem entsprechend der Grafik. Berücksichtigt sind dabei:
- ein systematischer (5, 2)–Blockcode C mit den Codeworten
- x_0 = (0,0,0,0,0), x_1 = (0,1,0,1,0), x_2 = (1,0,1,0,1), x_3 = (1,1,1,1,1),
- ein digitales (binäres) Kanalmodell, das den Vektor x ∈ GF(25) in den Vektor y_∈GF(25) verfälscht,
- ein Maximum–Likelihood–Decoder mit der Entscheidungsregel
- z_=argmax
In der Gleichung bezeichnet d_{\rm H} (\underline{y},\underline{x_{i}}) die Hamming–Distanz zwischen Empfangswort \underline{y} und dem (möglicherweise) gesendeten Codewort \underline{x_{i}}.
Hinweis:
Die Aufgabe gehört zum Kanalmodelle und Entscheiderstrukturen
Fragebogen
Musterlösung
(1) Die Hamming–Distanzen zwischen dem spezifischen Empfangswort \underline{y} = (1, 0, 0, 0, 1) und den vier möglichen Codeworten \underline{x}_{i} ergeben sich wie folgt:
- d_{\rm H}(\underline{y}, \hspace{0.05cm}\underline{x}_0) = 2\hspace{0.05cm}, \hspace{0.3cm} d_{\rm H}(\underline{y}, \hspace{0.05cm}\underline{x}_1) = 4\hspace{0.05cm}, \hspace{0.3cm} d_{\rm H}(\underline{y}, \hspace{0.05cm}\underline{x}_2) = 1\hspace{0.05cm}, \hspace{0.3cm} d_{\rm H}(\underline{y}, \hspace{0.05cm}\underline{x}_3) = 3\hspace{0.05cm}.
Entschieden wird sich für die Folge mit der geringsten Hamming–Distanz ⇒ Antwort 3.
2. 3. 4. 5. 6. 7.