Aufgaben:Aufgabe 1.4Z: Komplexes Nyquistspektrum: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
Zeile 40: Zeile 40:
  
 
<quiz display=simple>
 
<quiz display=simple>
 +
 +
{Für die ersten Teilfragen gelte $B = 0$. Wie groß ist die Nyquistfrequenz?
 +
|type="{}"}
 +
$f_{\rm Nyq} \ =  \ $ { 5 3% } $\ \rm kHz$
 +
 +
{Welcher Rolloff–Faktor liegt hier vor?
 +
|type="{}"}
 +
$r \ =  \ $ { 0.4 3% }
 +
 +
{Berechnen Sie den Maximalwert $g_{0}$ des Nyquistimpulses $g(t)$.
 +
|type="{}"}
 +
$g_{0} \ =  \ ${ 1 3% } $\ \rm V$
 +
 +
{Berechnen Sie $g(t)$ für die Zeitpunkte $t = 100\ \mu \rm s$ und $t = 200\ \mu \rm s$.
 +
|type="{}"}
 +
$B = 0:  g(t = 100\ \mu \rm s) \ =  \ $ { 0 3% } $\ \rm V$
 +
$B = 0:  g(t = 200\ \mu \rm s) \ =  \ $ { 0 3% } $\ \rm V$
 +
 +
{Berechnen Sie den Impulswert zur Zeit $t = 250\ \mu \rm s$.
 +
|type="{}"}
 +
$B = 0:  g(t = 250\ \mu \rm s) \ =  \ $ { 0 3% } $\ \rm V$
 +
 
{Multiple-Choice Frage
 
{Multiple-Choice Frage
 
|type="[]"}
 
|type="[]"}
Zeile 48: Zeile 70:
 
{Input-Box Frage
 
{Input-Box Frage
 
|type="{}"}
 
|type="{}"}
$\alpha$ = { 0.3 }
+
$\alpha \ =  \ $ { 0.3 }
  
  

Version vom 5. November 2017, 11:45 Uhr


Komplexes Nyquistspektrum

Betrachtet wird ein Impuls $g(t)$ mit dem Spektrum gemäß der Skizze. Man erkennt aus dieser Darstellung:

  • Der Realteil von $G(f)$ verläuft trapezförmig mit den beiden Eckfrequenzen $f_{1} = 3 \ \rm kHz$ und $f_{2} = 7 \ \rm kHz$.

Im Bereich $|f| < f_{1}$ gilt $Re[G(f)]$ = $A = 10^{-4} \ \rm V/Hz$.

  • Der Imaginärteil von $G(f)$ wird für die Teilaufgaben (1) bis (5) stets zu $0$ angenommen. In diesem Fall ist $g(t)$ sicher ein Nyquistimpuls.
  • Ab der Teilaufgabe (6) hat der Imaginärteil $Im[G(f)]$ im Bereich $f_{1} \leq | f | \leq f_{2}$ einen Dreiecksverlauf mit den Werten $\pm B$ bei den Dreieckspitzen.

Zu überprüfen ist, ob der Impuls $g(t)$ auch mit komplexem Spektrum der ersten Nyquistbedingung genügt:

$$g(\nu T) = \left\{ \begin{array}{c} g_0 \\ 0 \\ \end{array} \right.\quad \begin{array}{*{1}c} {\rm{f\ddot{u}r}} \\ {\rm{f\ddot{u}r}} \\ \end{array}\begin{array}{*{20}c} \nu = 0 \hspace{0.05cm}, \\ \nu \ne 0 \hspace{0.1cm}. \\ \end{array}$$

Im Verlauf dieser Aufgabe wird auf folgende Beschreibungsgrößen Bezug genommen:

  • Die Nyquistfrequenz gibt den Symmetriepunkt des Flankenabfalls an:
$$f_{\rm Nyq}= \frac{1}{2T}= \frac{f_1 +f_2 } {2 }\hspace{0.05cm}.$$
  • Der Rolloff–Faktor ist ein Maß für die Flankensteilheit:
$$r = \frac{f_2 -f_1 } {f_2 +f_1 } \hspace{0.05cm}.$$


Hinweis:

Die Aufgabe bezieht sich auf das Eigenschaften von Nyquistsystemen Als bekannt vorausgesetzt werden kann die Fourierrücktransformierte $g(t)$ eines trapezförmigen Nyquistspektrums mit Rolloff–Faktor $r$:

Ein dreieckförmiges Tiefpass–Spektrum $G(f)$, das auf $| f | < f_{0}$ begrenzt ist und für das $G(f = 0) = B$ gilt, führt nach der Fourierrücktransformation zu folgender Zeitfunktion:

$$g ( t )= B \cdot f_0 \cdot {\rm si}^2 \left ( {\pi f_0 t}\right)\hspace{0.05cm}.$$


Fragebogen

1

Für die ersten Teilfragen gelte $B = 0$. Wie groß ist die Nyquistfrequenz?

$f_{\rm Nyq} \ = \ $

$\ \rm kHz$

2

Welcher Rolloff–Faktor liegt hier vor?

$r \ = \ $

3

Berechnen Sie den Maximalwert $g_{0}$ des Nyquistimpulses $g(t)$.

$g_{0} \ = \ $

$\ \rm V$

4

Berechnen Sie $g(t)$ für die Zeitpunkte $t = 100\ \mu \rm s$ und $t = 200\ \mu \rm s$.

$B = 0: g(t = 100\ \mu \rm s) \ = \ $

$\ \rm V$
$B = 0: g(t = 200\ \mu \rm s) \ = \ $

$\ \rm V$

5

Berechnen Sie den Impulswert zur Zeit $t = 250\ \mu \rm s$.

$B = 0: g(t = 250\ \mu \rm s) \ = \ $

$\ \rm V$

6

Multiple-Choice Frage

Falsch
Richtig

7

Input-Box Frage

$\alpha \ = \ $


Musterlösung

(1)  (2)  (3)  (4)  (5)  (6)