Applets:Impulse und Spektren: Unterschied zwischen den Versionen
Tasnad (Diskussion | Beiträge) K (Tasnad verschob die Seite Impulse & Spektren nach Appletts:Impulse & Spektren, ohne dabei eine Weiterleitung anzulegen) |
Tasnad (Diskussion | Beiträge) K (Tasnad verschob die Seite Appletts:Impulse & Spektren nach Impulse & Spektren, ohne dabei eine Weiterleitung anzulegen) |
(kein Unterschied)
|
Version vom 9. Oktober 2017, 16:51 Uhr
Frage an Tasnad und David: In der jetzigen Form ist ein Applet sowohl diese Beschreibungsdatei als auch die das zu öffnende HTML5-Programm. Das führt bei der Beschreibung zu Problemen.
Ich verwende jetzt mal Applikation für die Beschreibung und Applet für das HTML5-Programm. Dann könnte der Button „Applet in neuem TAB öffnen” so bleiben. Zwei andere Begriffe wären mir allerdings lieber.
Bitte linksbündig Applet in neuem Tab öffnen
Inhaltsverzeichnis
Programmbeschreibung
Dargestellt werden impulsförmige symmetrische Zeitsignale ⇒ „Impulse” x(t) und die dazugehörigen Spektralfunktionen X(f), nämlich
- Gaußimpuls (englisch: Gaussian pulse),
- Rechteckimpuls (englisch: Rectangular pulse),
- Dreieckimpuls (englisch: Triangular pulse),
- Trapezimpuls (englisch: Trapezoidal pulse),
- Cosinus–Rolloff–Impuls (englisch: Cosine-rolloff pulse).
Das aufzurufende Applet verwendet die englischen Begriffe im Gegensatz zu dieser deutschen Beschreibung. Die englische Beschreibung finden Sie unter Pulses & Spectra.
Weiter ist zu beachten:
- Dargestellt werden x(t) bzw. X(f) für bis zu zwei Parametersätzen in jeweils einem Diagramm.
- Die roten Kurven und Zahlenangaben gelten für den linken Parametersatz, die blauen für den rechten Parametersatz.
- Die Abszissen t (Zeit) und f (Frequenz) sowie die Ordinaten x(t) (Signalwerte) bzw. X(f) (Spektralwerte) sind jeweils normiert.
Beispiel: Stellt man einen Rechteckimpuls mit Amplitude A1=1 und äquivalenter Impulsdauer Δt1=1 ein, so ist x1(t) im Bereich −0.5<t<+0.5 gleich 1 und außerhalb dieses Bereichs gleich 0. Die Spektralfunktion X1(f) verläuft si–förmig mit X1(f=0)=1 und der ersten Nullstelle bei f=1.
Soll mit dieser Einstellung ein Rechteckimpuls mit A=K=3 V und Δt=T=2 ms nachgebildet werden, dann sind alle Signalwerte mit K=3 V und alle Spektralwerte mit K⋅T=0.006 V/Hz zu multiplizieren. Der maximale Spektralwert ist dann X(f=0)=0.006 V/Hz und die erste Nullstelle liegt bei f=1/T=0.5 kHz.
Zur Handhabung des Programms
Fehlt noch! Wie im alten Programm mit Grafik
Theoretischer Hintergrund
Zusammenhang x(t)⇔X(f)
- Der Zusammenhang zwischen Zeitfunktion x(t) und dem Spektrum X(f) ist durch das erste Fourierintegral gegeben:
- X(f)=FT[x(t)]=∫+∞−∞x(t)⋅e−j2πftdtFT: Fouriertransformation.
- Um aus der Spektralfunktion X(f) die Zeitfunktion x(t) berechnen zu können, benötigt man das zweite Fourierintegral:
- x(t)=IFT[X(f)]=∫+∞−∞X(f)⋅e+j2πftdfIFT:Inverse Fouriertransformation.
- In allen Beispielen verwenden wir reelle und gerade Funktionen. Somit gilt:
- x(t)=∫+∞−∞X(f)⋅cos(2πft)df ∘−−−∙ X(f)=∫+∞−∞x(t)⋅cos(2πft)dt.
- x(t) und X(f) haben unterschiedliche Einheiten, z. B. x(t) in V, X(f) in V/Hz.
- Der Zusammenhang zwischen diesem Modul „Impulse & Spektren” und dem ähnlich aufgebauten Applet Tiefpässe im Zeit- und Frequenzbereich basiert auf dem Vertauschungssatz.
- Alle Zeiten sind auf eine Normierungszeit T normiert und alle Frequenzen auf 1/T⇒ die Spektralwerte X(f) müssen noch mit der Normierungszeit T multipliziert werden.
Beispiel: Stellt man einen Rechteckimpuls mit Amplitude A1=1 und äquivalenter Impulsdauer Δt1=1 ein, so ist x1(t) im Bereich −0.5<t<+0.5 gleich 1 und außerhalb dieses Bereichs gleich 0. Die Spektralfunktion X1(f) verläuft si–förmig mit X1(f=0)=1 und der ersten Nullstelle bei f=1.
Soll mit dieser Einstellung ein Rechteckimpuls mit A=K=3 V und Δt=T=2 ms nachgebildet werden, dann sind alle Signalwerte mit K=3 V und alle Spektralwerte mit K⋅T=0.006 V/Hz zu multiplizieren. Der maximale Spektralwert ist dann X(f=0)=0.006 V/Hz und die ersteNullstelle liegt bei f=1/T=0.5 kHz.
Gaussian Pulse ⇒ Gaußimpuls
Ab hier überarbeiten hinsichtlich Kursiv
- Die Zeitfunktion mit der Höhe K und der (äquivalenten) Dauer Δt lautet:
x(t)=K⋅e−π⋅(t/Δt)2.
- Die äquivalente Zeitdauer Δt ergibt sich aus dem flächengleichen Rechteck.
- Der Wert bei t=Δt/2 ist um den Faktor 0.456 kleiner als der Wert bei t=0.
- Für die Spektralfunktion erhält man gemäß der Fouriertransformation:
X(f)=K⋅Δt⋅e−π(f⋅Δt)2.
- Je kleiner die äquivalente Zeitdauer Δt ist, um so breiter und niedriger ist das Spektrum (Reziprozitätsgesetz von Bandbreite und Impulsdauer).
- Sowohl x(t) als auch X(f) sind zu keinem f- bzw. t-Wert exakt gleich Null.
- Praktisch ist der Gaußimpuls in Zeit und Frequenz begrenzt. Zum Beispiel ist x(t) bereits bei t=1.5Δ⋅t auf 1% des Maximums abgefallen.
Rectangular Pulse ⇒ Rechteckimpuls
- Die Zeitfunktion mit der Höhe K und der (äquivalenten) Dauer Δt lautet:
x(t)={KK/20f¨urf¨urf¨ur|t|<T/2,|t|=T/2,|t|>T/2.
- Der ±Δt/2 - Wert liegt mittig zwischen links- und rechtsseitigem Grenzwert.
- Für die Spektralfunktion erhält man entsprechend den Gesetzmäßigkeiten der Fouriertransformation (1. Fourierintegral):
X(f)=K⋅Δt⋅si(π⋅Δt⋅f)mit si(x)=sin(x)x.
- Der Spektralwert bei f=0 ist gleich der Rechteckfläche der Zeitfunktion.
- Die Spektralfunktion besitzt Nullstellen in äquidistanten Abständen 1/Δt.
- Das Integral über der Spektralfunktion X(f) ist gleich dem Signalwert zum Zeitpunkt t=0, also der Impulsamplitude K.
Triangular Pulse ⇒ Dreieckimpuls
- Die Zeitfunktion mit der Höhe K und der (äquivalenten) Dauer Δt lautet:
x(t)={K⋅(1−|t|Δt)0f¨urf¨ur|t|<Δt,|t|≥Δt.
- Die absolute Zeitdauer ist 2⋅Δt, d.h. doppelt so groß als die des Rechtecks.
- Für die Spektralfunktion erhält man gemäß der Fouriertransformation:
X(f)=K⋅Δf⋅si2(π⋅Δt⋅f)mit si(x)=sin(x)x.
- Obige Zeitfunktion ist gleich der Faltung zweier Rechteckimpulse, jeweils mit Breite Δt⇒X(f) beinhaltet anstelle der si-Funktion die si2-Funktion.
- X(f) weist somit ebenfalls Nullstellen im äquidistanten Abständen 1/Δf auf.
- Der asymptotische Abfall von X(f) erfolgt hier mit 1/f2, während zum Vergleich der Rechteckimpuls mit 1/f abfällt.
Trapezoidal Pulse ⇒ Trapezimpuls
Die Zeitfunktion mit der Höhe K und den Zeitparametern t1 und t2 lautet:
x(t)={KK⋅t2−|t|t2−t10f¨urf¨urf¨ur|t|≤t1,t1≤|t|≤t2,|t|≥t2.
- Für die äquivalente Zeitdauer (flächengleiches Rechteck) gilt: Δt=t1+t2.
- Der Rolloff-Faktor (im Zeitbereich) kennzeichnet die Flankensteilheit:
r=t2−t1t2+t1.
- Sonderfall r=0: Rechteckimpuls. Sonderfall r=1: Dreieckimpuls.
- Für die Spektralfunktion erhält man gemäß der Fouriertransformation:
X(f)=K⋅Δt⋅si(π⋅Δt⋅f)⋅si(π⋅r⋅Δt⋅f)mit si(x)=sin(x)x.
- Der asymptotische Abfall von X(f) liegt zwischen 1/f (für Rechteck, r=0) und 1/f2 (für Dreieck, r=1).
Cosine-rolloff Pulse ⇒ Cosinus-Rolloff-Impuls
Die Zeitfunktion mit der Höhe K und den Zeitparametern t1 und t2 lautet:
x(t)={KK⋅cos2(|t|−t1t2−t1⋅π2)0f¨urf¨urf¨ur|t|≤t1,t1≤|t|≤t2,|t|≥t2.
- Für die äquivalente Zeitdauer (flächengleiches Rechteck) gilt: Δt=t1+t2.
- Der Rolloff-Faktor (im Zeitbereich) kennzeichnet die Flankensteilheit:
r=t2−t1t2+t1.
- Sonderfall r=0: Rechteckimpuls. Sonderfall r=1: Cosinus2-Impuls.
- Für die Spektralfunktion erhält man gemäß der Fouriertransformation:
X(f)=K⋅Δt⋅cos(π⋅r⋅Δt⋅f)1−(2⋅r⋅Δt⋅f)2⋅si(π⋅Δt⋅f).
- Je größer der Rolloff-Faktor r ist, desto schneller nimmt X(f) asymptotisch mit f ab.
cos2-rolloff ⇒ Cosinus-Quadrat-Impuls
- Dies ist ein Sonderfall des Cosinus-Rolloff-Impuls und ergibt sich für r=1 (t1=0,t2=Δt):
x(t)={K⋅cos2(|t|⋅π2⋅Δt)0f¨urf¨ur|t|<Δt,|t|≥Δt.
- Für die Spektralfunktion erhält man gemäß der Fouriertransformation:
X(f)=K⋅Δf⋅π4⋅[si(π(Δt⋅f+0.5))+si(π(Δt⋅f−0.5))]⋅si(π⋅Δt⋅f).
- Wegen der letzten si-Funktion ist X(f)=0 für alle Vielfachen von F=1/Δt. Die äquidistanten Nulldurchgänge des Cos-Rolloff-Impulses bleiben erhalten.
- Aufgrund des Klammerausdrucks weist X(f) nun weitere Nulldurchgänge bei f=±1.5F, ±2.5F, ±3.5F, ... auf.
- Für die Frequenz f=±F/2 erhält man die Spektralwerte K⋅Δt/2.
- Der asymptotische Abfall von X(f) verläuft in diesem Sonderfall mit 1/f3.
Über die Autoren
Dieses interaktive Berechnungstool wurde am Lehrstuhl für Nachrichtentechnik der Technischen Universität München konzipiert und realisiert.
- Die erste Version wurde 2005 von Ji Li im Rahmen ihrer Diplomarbeit mit „FlashMX–Actionscript” erstellt (Betreuer: Günter Söder und Klaus Eichin).
- 2017 wurde „Impulse & Spektren” von David Jobst im Rahmen seiner Ingenieurspraxis (Betreuer: Tasnád Kernetzky) auf „HTML5” umgesetzt und neu gestaltet.