Aufgabe 4.2: Tiefpass zur Signalrekonstruktion

Aus LNTwww
Wechseln zu:Navigation, Suche

Beispiele für kontinuierliches und diskretes Spektrum

Wir betrachten in dieser Aufgabe zwei verschiedene Quellensignale  $q_{\rm kon}(t)$  und  $q_{\rm dis}(t)$,  deren Betragsspektren  $|Q_{\rm kon}(f)|$  und  $|Q_{\rm dis}(f)|$  grafisch dargestellt sind.  Die höchste in den Signalen vorkommende Frequenz ist jeweils  $4 \ \rm kHz$.

  • Von der Spektralfunktion  $Q_{\rm kon}(f)$  ist nicht mehr bekannt,  als dass es sich um ein kontinuierliches Spektrum handelt,  wobei gilt:
$$Q_{\rm kon}(|f| \le 4\,{\rm kHz}) \ne 0 \hspace{0.05cm}.$$
  • Das Spektrum  $Q_{\rm dis}(f)$  beinhaltet Spektrallinien bei  $±1 \ \rm kHz$,  $±2 \ \rm kHz$,  $±3 \ \rm kHz$  und  $±4 \ \rm kHz$.  Somit gilt:
$$q_{\rm dis}(t) = \sum_{i=1}^{4}C_i \cdot \cos (2 \pi \cdot f_i \cdot t - \varphi_i),$$
Amplitudenwerte:   $C_1 = 1.0 \ \rm V$, $C_2 = 1.8 \ \rm V$, $C_3 = 0.8 \ \rm V$, $C_4 = 0.4 \ \rm V.$
Die Phasenwerte  $φ_1$,  $φ_2$  und  $φ_3$  liegen jeweils im Bereich  $±180^\circ$  und es gilt  $φ_4 = 90^\circ$.


Die Signale werden jeweils mit der Frequenz  $f_{\rm A}$  abgetastet und sofort einem idealen,  rechteckförmigen Tiefpass mit der Grenzfrequenz  $f_{\rm G}$  zugeführt.  Dieses Szenario gilt zum Beispiel für

  • die störungsfreie Pulsamplitudenmodulation  $\rm (PAM)$,  und
  • die störungsfreie Pulscodemodulation  $\rm (PCM)$  bei unendlich großer Quantisierungsstufenzahl  $M$.


Das Ausgangssignal des  (rechteckförmigen)  Tiefpasses wird als Sinkensignal  $v(t)$  bezeichnet,  und für das Fehlersignal gilt 

$$ε(t) = v(t) - q(t).$$

Dieses ist nur dann von Null verschieden,  wenn die Parameter der Abtastung  $($Abtastfrequenz $f_{\rm A})$  und/oder der Signalrekonstruktion  $($Grenzfrequenz $f_{\rm G})$  nicht bestmöglich dimensioniert sind.



Hinweise:


Fragebogen

1

Welche Aussagen treffen für  $f_{\rm A} = 8\ \rm kHz$  und  $f_{\rm G} = 4\ \rm kHz$  zu?

Das Signal  $q_{\rm kon}(t)$  lässt sich vollständig rekonstruieren:   $ε_{\rm kon}(t) = 0$.
Das Signal  $q_{\rm dis}(t)$  lässt sich vollständig rekonstruieren:   $ε_{\rm dis}(t) = 0$.

2

Welche Aussagen treffen für  $f_{\rm A} = 10\ \rm kHz$  und  $f_{\rm G} = 5\ \rm kHz$  zu?

Das Signal  $q_{\rm dis}(t)$  lässt sich vollständig rekonstruieren:   $ε_{\rm dis}(t) = 0$.
$ε_{\rm dis}(t)$  ist eine harmonische Schwingung mit  $4 \ \rm kHz$.
$ε_{\rm dis}(t)$  ist eine harmonische Schwingung mit  $6 \ \rm kHz$.

3

Welche Aussagen treffen für  $f_{\rm A} = 10\ \rm kHz$  und  $f_{\rm G} = 3.5\ \rm kHz$  zu?

Das Signal  $q_{\rm dis}(t)$  lässt sich vollständig rekonstruieren:   $ε_{\rm dis}(t) = 0$.
$ε_{\rm dis}(t)$  ist eine harmonische Schwingung mit  $4 \ \rm kHz$.
$ε_{\rm dis}(t)$  ist eine harmonische Schwingung mit  $6 \ \rm kHz$.

4

Welche Aussagen treffen für  $f_{\rm A} = 10\ \rm kHz$  und  $f_{\rm G} = 6.5\ \rm kHz$ zu?

Das Signal  $q_{\rm dis}(t)$  lässt sich vollständig rekonstruieren:   $ε_{\rm dis}(t) = 0$.
$ε_{\rm dis}(t)$  ist eine harmonische Schwingung mit  $4 \ \rm kHz$.
$ε_{\rm dis}(t)$  ist eine harmonische Schwingung mit  $6 \ \rm kHz$.


Musterlösung

(1)  Richtig ist nur die  erste Aussage:

  • Die Abtastung von  $q_{\rm dis}(t)$  mit der Abtastfrequenz  $f_{\rm A} = 8 \ \rm kHz$  führt zu einem irreversiblen Fehler,  da  $Q_{\rm dis}(f)$  einen diskreten Spektralanteil  ("Diraclinie")  bei  $f_4 = 4\ \rm kHz$  beinhaltet und der Phasenwert  $φ_4 ≠ 0$  ist.
  • Mit dem hier angegebenen Phasenwert  $φ_4 = 90^\circ$  $(4 \ \rm kHz$– Sinuskomponente$)$  gilt  $ε_{\rm dis}(t) = v_{\rm dis}(t) - q_{\rm dis}(t) = -0.4 \ \rm V · \sin(2π · f_4 · t)$.  Siehe auch Musterlösung zur Aufgabe 4.2Z.
  • Dagegen kann das Signal  $q_{\rm kon}(t)$  mit dem kontinuierlichen Spektrum  $Q_{\rm kon}(f)$  auch dann mit einem Rechteck–Tiefpass  $($mit der Grenzfrequenz  $f_{\rm G} = 4\ \rm kHz)$  vollständig rekonstruiert werden, wenn die Abtastfrequenz  $f_{\rm A} = 8\ \rm kHz$  verwendet wurde.  Für alle Frequenzen ungleich  $f_4$  ist das Abtasttheorem erfüllt.
  • Der Anteil der  $f_4$–Komponente am gesamten Spektrum  $Q_{\rm kon}(f)$  ist aber nur verschwindend klein   ⇒   ${\rm Pr}(f_4) → 0$, solange das Spektrum bei  $f_4$  keine Diraclinie aufweist.


(2)  Richtig ist nur der  Lösungsvorschlag 1:

  • Mit  $f_{\rm A} = 10\ \rm kHz$  wird das Abtasttheorem in beiden Fällen erfüllt.
  • Mit  $f_{\rm G} = f_{\rm A} /2$  sind beide Fehlersignale  $ε_{\rm kon}(t)$ und $ε_{\rm dis}(t)$ identisch Null.
  • Die Signalrekonstruktion funktioniert darüber hinaus auch dann,  solange  $f_{\rm G} > 4 \ \rm kHz$  und  $f_{\rm G} < 6 \ \rm kHz$  gilt.


(3)  Richtig ist hier der  Lösungsvorschlag 2:

  • Mit  $f_{\rm G} = 3.5 \ \rm kHz$  entfernt der Tiefpass fälschlicherweise den  $4\ \rm kHz$–Anteil,  das heißt dann gilt:
$$ v_{\rm dis}(t) = q_{\rm dis}(t) - 0.4\,{\rm V} \cdot \sin (2 \pi \cdot f_{\rm 4} \cdot t)\hspace{0.3cm}\Rightarrow \hspace{0.3cm} \varepsilon_{\rm dis}(t) = - 0.4\,{\rm V} \cdot \sin (2 \pi \cdot f_{\rm 4} \cdot t)\hspace{0.05cm}.$$


Signalrekonstruktion mit zu großer Grenzfrequenz

(4)  Richtig ist hier der  Lösungsvorschlag 3:

  • Durch die Abtastung mit  $f_{\rm A} = 10\ \rm kHz$  ergibt sich das rechts skizzierte periodische Spektrum.
  • Der Tiefpass mit  $f_{\rm G} = 6.5 \ \rm kHz$  entfernt alle diskreten Frequenzanteile mit  $|f| ≥ 7\ \rm kHz$, nicht aber den  $6\ \rm kHz$–Anteil.


Das Fehlersignal  $ε_{\rm dis}(t) = v_{\rm dis}(t) - q_{\rm dis}(t)$  ist dann eine harmonische Schwingung mit

  • der Frequenz  $f_6 = f_{\rm A} - f_4 = 6\ \rm kHz$,
  • der Amplitude  $A_4$ des  $f_4$–Anteils,
  • der Phase  $φ_{-4} = -φ_4$  des  $Q(f)$–Anteils bei  $f = -f_4$.