Aufgabe 3.1: Wahrscheinlichkeiten beim Würfeln

Aus LNTwww
Wechseln zu:Navigation, Suche

Summe  $S$  zweier Würfel

Wir betrachten das Zufallsexperiment  »Würfeln mit ein oder zwei Würfeln«.  Beide Würfel sind fair (die sechs möglichen Ergebnisse sind gleichwahrscheinlich) und durch ihre Farben unterscheidbar:

  • Die Zufallsgröße  $R = \{1, \ 2,\ 3,\ 4,\ 5,\ 6 \}$  bezeichnet die Augenzahl des roten Würfels.
  • Die Zufallsgröße  $B = \{1,\ 2,\ 3,\ 4,\ 5,\ 6 \}$  bezeichnet die Augenzahl des blauen Würfels.
  • Die Zufallsgröße  $S =R + B$  steht für die Summe beider Würfel.


In dieser Aufgabe sollen verschiedene Wahrscheinlichkeiten mit Bezug zu den Zufallsgrößen  $R$,  $B$  und  $S$  berechnet werden, wobei das oben angegebene Schema hilfreich sein kann.  Dieses beinhaltet die Summe  $S$  in Abhängigkeit von  $R$  und  $B$.





Hinweise:



Fragebogen

1

Geben Sie die folgenden Wahrscheinlichkeiten an:

$\text{Pr}(R = 6)\ = \ $

$\text{Pr}(B ≤ 2)\ = \ $

$\text{Pr}(R = B)\ = \ $

2

Wie lauten die folgenden Wahrscheinlichkeiten?

$\text{Pr}(S = 3)\ = \ $

$\text{Pr}(S = 7)\ = \ $

$\text{Pr(ungeradzahlige Summe)}\ = \ $

3

Geben Sie die folgenden Wahrscheinlichkeiten an:

$\text{Pr}\big [(R = 6)\ \cup \ (B =6)\big]\ = \ $

$\text{Pr}\big[(R = 6)\ \cap \ (B =6)\big]\ = \ $

4

Wie groß ist die Wahrscheinlichkeit, dass beim  $L$–ten Doppelwurf zum ersten Mal eine „6” dabei ist?

$L = 1\text{:}\hspace{0.5cm}\text{Pr(erste „6”)} \ = \ $

$L = 2\text{:}\hspace{0.5cm}\text{Pr(erste „6”)} \ = \ $

$L = 3\text{:}\hspace{0.5cm}\text{Pr(erste „6”)} \ = \ $

5

Wie groß ist die Wahrscheinlichkeit   »Man benötigt eine geradzahlige Anzahl an Doppelwürfen, um die erste „6”   zu erhalten« ?
Mit der Nomenklatur gemäß Teilaufgabe  (4):

$\text{Pr(}L\text{ ist gerade | erste „6”)}\ = \ $


Musterlösung

(1)  Setzt man faire Würfel voraus, so ergibt sich für die Wahrscheinlichkeit, dass

  • mit dem roten Würfel eine „6” geworfen wird:
$$\underline{{\rm Pr}(R=6) = 1/6} = 0.1667 \hspace{0.05cm},$$
  • mit dem blauen Würfel eine „1” oder eine „2” geworfen wird:
$$\underline{{\rm Pr}(B\le 2) = 1/3} = 0.3333 \hspace{0.05cm},$$
  • beide Würfel die gleiche Augenzahl anzeigen:
$$\underline{{\rm Pr}(R=B) = 6/36} = 0.1667 \hspace{0.05cm}.$$

Letzteres basiert auf der 2D–Darstellung auf dem Angabenblatt sowie auf der „Klassischen Definition der Wahrscheinlichkeit” entsprechend  $K/M$:

  • $K = 6$  der insgesamt  $M = 36$  gleichwahrscheinlichen Elementarereignisse  $R \cap B$  können dem hieraus abgeleiteten Ereignis  $R=B$  zugeordnet werden.
  • Diese liegen auf der Diagonalen.  Würfelspieler sprechen in diesem Fall von einem „Pasch”.


(2)  Die Lösung basiert wieder auf der Klassischen Definition der Wahrscheinlichkeit:

  • In  $K = 2$  der  $M = 36$  Elementarfelder steht eine „3”   ⇒   ${\rm Pr}(S = 3) = 2/36\hspace{0.15cm}\underline{ = 0.0556}.$
  • In  $K = 6$  der  $M = 36$  Elementarfelder steht eine „7”  ⇒   ${\rm Pr}(S = 7) = 6/36\hspace{0.15cm}\underline{ = 0.1667}.$
  • In  $K = 18$  der  $M = 36$  Felder steht eine ungerade Zahl   ⇒   ${\rm Pr}(S\text{ ist ungerade}) = 18/36\hspace{0.15cm}\underline{ = 0.5}.$


  • Dieses letzte Ergebnis könnte man auch auf anderem Wege erhalten:
$${\rm Pr}(S\hspace{0.15cm}{\rm ist \hspace{0.15cm} ungerade}) = {\rm Pr}\big [(R\hspace{0.12cm}{\rm ist\hspace{0.12cm} ungerade}) \cap (B\hspace{0.12cm}{\rm ist\hspace{0.12cm} gerade}) \big ] + {\rm Pr}\big [(R\hspace{0.12cm}{\rm ist\hspace{0.12cm} gerade}) \cap (B\hspace{0.12cm}{\rm ist\hspace{0.12cm} ungerade})\big ]\hspace{0.05cm}. $$
  • Mit  ${\rm Pr}(R\hspace{0.12cm}{\rm ist\hspace{0.12cm} gerade}) = {\rm Pr} (R\hspace{0.12cm}{\rm ist\hspace{0.12cm} ungerade}) = {\rm Pr}(B\hspace{0.12cm}{\rm ist\hspace{0.12cm} gerade})= {\rm Pr}(B\hspace{0.12cm}{\rm ist\hspace{0.12cm} ungerade}) = 1/2$  folgt daraus ebenfalls:
$${\rm Pr}(S\hspace{0.15cm}{\rm ist \hspace{0.15cm} ungerade}) = 1/2 \cdot 1/2 + 1/2 \cdot 1/2 = 1/2 \hspace{0.05cm}.$$


(3)  Die Wahrscheinlichkeit für das Ereignis, dass mindestens einer der beiden Würfel eine „6” zeigt, ist:

$${\rm Pr}\big [(R= 6) \cup (B= 6) \big ] = K/M = 11/36 \hspace{0.15cm} \underline{= 0.3056} \hspace{0.05cm}.$$
  • Die zweite Wahrscheinlichkeit steht allein für den „Sechser–Pasch”:
$${\rm Pr}\big [(R= 6) \cap (B= 6) \big ] = K/M = 1/36 \hspace{0.15cm} \underline{= 0.0278} \hspace{0.05cm}.$$


(4)  Das Ergebnis für  $L = 1$  wurde bereits in der Teilaufgabe  (3)  ermittelt:

$$p_1 = {\rm Pr}\big [(R= 6) \cup (B= 6) \big ] = {11}/{36} \hspace{0.15cm} \underline{= 0.3056} \hspace{0.05cm}.$$
  • Die Wahrscheinlichkeit  $p_2$  lässt sich mit  $p_1$  wie folgt ausdrücken:
$$p_2 = (1 - p_1) \cdot p_1 = \frac{25}{36} \cdot \frac{11}{36} \hspace{0.15cm} \underline{= 0.2122} \hspace{0.05cm}. $$
In Worten:   Die Wahrscheinlichkeit, dass im zweiten Wurf erstmals eine „6” geworfen wird, ist gleich der Wahrscheinlichkeit, dass im ersten Wurf keine „6” geworfen wurde   ⇒   Wahrscheinlichkeit  $1-p_1$, aber im zweiten Wurf mindestens eine „6” dabei ist   ⇒   Wahrscheinlichkeit  $p_1$.
  • Entsprechend gilt für die Wahrscheinlichkeit „erste 6 im dritten Wurf”:
$$p_3 = (1 - p_1)^2 \cdot p_1 = \frac{25}{36} \cdot \frac{25}{36} \cdot\frac{11}{36} \hspace{0.15cm} \underline{= 0.1474} \hspace{0.05cm}.$$


(5)  Durch Erweiterung der Musterlösung zur Teilaufgabe  (4)  erhält man:

$$\text{Pr(gerades }L\ | \text{ erste „6”})= p_2 \hspace{-0.05cm}+ \hspace{-0.05cm}p_4 \hspace{-0.05cm}+ \hspace{-0.05cm} p_6 \hspace{-0.05cm}+ \hspace{-0.05cm} \text{...} = (1 \hspace{-0.05cm}- \hspace{-0.05cm} p_1) \cdot p_1 \hspace{-0.05cm}+ \hspace{-0.05cm} (1 \hspace{-0.05cm}- \hspace{-0.05cm} p_1)^3 \cdot p_1 \hspace{-0.05cm}+ \hspace{-0.05cm}(1 \hspace{-0.05cm}- \hspace{-0.05cm} p_1)^5 \cdot p_1 \hspace{-0.05cm}+ \hspace{-0.05cm} \text{...} = (1 \hspace{-0.05cm}- \hspace{-0.05cm} p_1) \cdot p_1 \cdot \left [ 1 \hspace{-0.05cm}+ \hspace{-0.05cm} (1 \hspace{-0.05cm}- \hspace{-0.05cm} p_1)^2 \hspace{-0.05cm}+ \hspace{-0.05cm} (1 \hspace{-0.05cm}- \hspace{-0.05cm} p_1)^4 +\text{...}\hspace{0.05cm} \right ] \hspace{0.05cm}. $$
  • Entsprechend erhält man für die Wahrscheinlichkeit des Komplementärereignisses:
$${\rm Pr}(L\hspace{0.15cm}{\rm ist\hspace{0.15cm} ungerade \ | \text{ erste „6”}}) = p_1 + p_3 + p_5 + \text{...} = p_1 \cdot \left [ 1 + (1 - p_1)^2 + (1 - p_1)^4 + \text{...} \hspace{0.15cm} \right ] \hspace{0.05cm}\hspace{0.3cm} \Rightarrow \hspace{0.3cm} \frac{{\rm Pr}(L\hspace{0.15cm}{\rm ist\hspace{0.15cm} ungerade \ | \text{ erste „6”}}) } {{\rm Pr}(L\hspace{0.15cm}{\rm ist\hspace{0.15cm} gerade} \ | \text{ erste „6”})} = \frac{1}{1 - p_1} \hspace{0.05cm}. $$
  • Weiter muss gelten:
$${\rm Pr}(L\hspace{0.15cm}{\rm ist\hspace{0.15cm} gerade \ | \text{ erste „6”}}) + {\rm Pr}(L\hspace{0.15cm}{\rm ist\hspace{0.15cm} ungerade \ | \text{ erste „6”}}) = 1$$
$$\Rightarrow \hspace{0.3cm} {\rm Pr}(L\hspace{0.15cm}{\rm ist\hspace{0.15cm} gerade \ | \text{ erste „6”}}) \cdot \left [ 1 + \frac{1}{1 - p_1} \right ] = 1 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} {\rm Pr}(L\hspace{0.15cm}{\rm ist\hspace{0.15cm} gerade \ | \text{ erste „6”}}) = \frac{1 - p_1}{2 - p_1} = \frac{25/36}{61/36} = \frac{25}{61} \hspace{0.15cm} \underline{= 0.4098} \hspace{0.05cm}.$$