Aufgabe 3.11Z: Maximum-Likelihood-Fehlergrößen

Aus LNTwww
Wechseln zu:Navigation, Suche

Berechnung der minimalen Gesamtfehlergrößen

Für die in der  Aufgabe 3.11  behandelte Maximum–Likelihood–Konstellation mit bipolaren Amplitudenkoeffizient  $a_{\rm \nu} ∈ \{+1, –1\}$  sollen die Fehlergrößen  $\varepsilon_{\rm \nu}(i)$  sowie die minimalen Gesamtfehlergrößen  ${\it \Gamma}_{\rm \nu}(–1)$ und ${\it \Gamma}_{\rm \nu}(+1)$  ermittelt werden.

  1. Der Grundimpuls ist durch die beiden Werte  $g_0$  und  $g_{\rm –1}$  gegeben. 
  2. Diese können ebenso wie die (verrauschten)  Detektionsabtastwerte  $d_0$  und  $d_1$  aus den nachfolgenden Berechnungen für die Fehlergrößen  $\varepsilon_{\rm \nu}(i)$  zu den Zeitpunkten  $\nu = 0$  und  $\nu = 1$  entnommen werden. 
  3. Anzumerken ist,  dass vor der eigentlichen Nachricht   $(a_1$,\ $a_2$,\ $a_3)$   stets das Symbol   $a_0 = 0$   gesendet wird.


Für den Zeitpunkt  $\nu = 0$  gilt:

$$\varepsilon_{0}(+1) \ = \ \big[-0.4- 0.4\big]^2=0.64 \hspace{0.05cm},$$
$$\varepsilon_{0}(-1) \ = \ \big[-0.4+ 0.4\big]^2=0.00 \hspace{0.05cm}.$$

Daraus könnte bereits zum Zeitpunkt  $\nu = 0$  geschlossen werden,  dass mit großer Wahrscheinlichkeit  $a_1 = -\hspace{-0.05cm}1$  ist.

Für den Zeitpunkt  $\nu = 1$  ergeben sich folgende Fehlergrößen,  die in der Literatur machmal auch als  "Metriken"  bezeichnet werden:

$$\varepsilon_{1}(+1, +1) \ = \ \big[-0.8- 0.6 -0.4\big]^2=3.24 \hspace{0.05cm},$$
$$\varepsilon_{1}(+1, -1) \ = \ \big[-0.8- 0.6 +0.4\big]^2=1.00 \hspace{0.05cm},$$
$$\varepsilon_{1}(-1, +1) \ = \ \big[-0.8+ 0.6 -0.4\big]^2=0.36 \hspace{0.05cm},$$
$$ \varepsilon_{1}(-1, -1) \ = \ \big[-0.8+ 0.6 +0.4\big]^2=0.04 \hspace{0.05cm}.$$

Die minimalen Gesamtfehlergrößen  ${\it \Gamma}_{\rm \nu}(-\hspace{-0.07cm}1)$  und  ${\it \Gamma}_{\rm \nu}(+1)$,  die mit diesen sechs Fehlergrößen berechnet werden können,  sind bereits in der Grafik eingezeichnet.  Die weiteren verrauschten Detektionsabtastwerte sind  $d_{2}=0.1 \hspace{0.05cm},\hspace{0.1cm} d_{3}=0.5 \hspace{0.05cm}.$



Hinweise:

  • Alle Größen sind hier normiert zu verstehen.  Gehen Sie zudem von bipolaren und gleichwahrscheinlichen Amplitudenkoeffizienten aus:  ${\rm Pr} (a_\nu = -\hspace{-0.05cm}1) = {\rm Pr} (a_\nu = +1)= 0.5.$



Fragebogen

1

Von welchen Detektionsabtastwerten  $d_0$  und  $d_1$  wurde hier ausgegangen?

$d_0 \ = \ $

$d_1\ = \ $

2

Welche Grundimpulswerte wurden dabei vorausgesetzt?

$g_0\ = \ $

$g_{-1} \ = \ $

3

Welche der aufgeführten Detektionsabtastwerte sind für  $\nu ≥ 1$  möglich?

$±0.2,$
$±0.4,$
$±0.6,$
$±1.0.$

4

Geben Sie die minimalen Gesamtfehlergrößen für die Zeit  $\nu = 2$  an  $(d_2 = 0.1)$.

${\it \Gamma}_2(+1)\ = \ $

${\it \Gamma}_2(-\hspace{-0.05cm}1)\ = \ $

5

Berechnen Sie die minimalen Gesamtfehlergrößen für die Zeit  $\nu = 3$  $(d_3 = 0.5)$.

${\it \Gamma}_3(+1) \ = \ $

${\it \Gamma}_3(-\hspace{-0.05cm}1) \ = \ $


Musterlösung

(1)  Aus den Gleichungen auf der Angabenseite erkennt man  $d_0 = \underline{–0.4}$  und  $d_1 = \underline {–0.8}$.


(2)  Die Fehlergrößen  (Metriken)  $\varepsilon_0(i)$  beinhalten den Grundimpulswert  $g_{\rm –1}$,  über den der Zusammenhang zwischen dem Amplitudenkoeffizienten  $a_1$  und dem Detektionsabtastwert  $d_0$  hergestellt wird  $(g_0$ ist in diesen Gleichungen nicht enthalten$)$.

  • Man erkennt  $g_{\rm –1}\ \underline {= 0.4}$.
  • Aus den Gleichungen für  $\nu = 1$  ist der Hauptwert  $g_0 \ \underline {= 0.6}$  ablesbar.


(3)  Richtig sind die Lösungsvorschläge  1 und 4:

  • Die möglichen Nutzabtastwerte sind  $\pm g_0 \pm g_{\rm –1} = \pm 0.6 \pm0.4$,  also  $\underline {±0.2}$  und  $\underline {±1.0}$.
  • Bei unipolarer Signalisierung   ⇒   $a_\nu \in \{0, \hspace{0.05cm} 1\}$  würden sich dagegen die Werte  $0, \ 0.4, \ 0.6$  und  $1$  ergeben.
  • Der Zusammenhang zwischen bipolaren Werten  $b_i$  und den unipolaren Äquivalenten  $u_i$  lautet allgemein:   $b_i = 2 \cdot u_i - 1 \hspace{0.05cm}.$


(4)  Die Fehlergrößen ergeben sich für  $\nu = 2$  unter Berücksichtigung des Ergebnisses aus  (3)  wie folgt:

$$\varepsilon_{2}(+1, +1) \ = \ [0.1 - 1.0]^2=0.81,\hspace{0.2cm} \varepsilon_{2}(-1, +1) = [0.1 +0.2]^2=0.09 \hspace{0.05cm},$$
$$\varepsilon_{2}(+1, -1) \ = \ [0.1 -0.2]^2=0.01,\hspace{0.2cm} \varepsilon_{2}(-1, -1) = [0.1 +1.0]^2=1.21 \hspace{0.05cm}.$$

Damit lauten die minimalen Gesamtfehlergrößen:

$${\it \Gamma}_{2}(+1) \ = \ {\rm Min}\left[{\it \Gamma}_{1}(+1) + \varepsilon_{2}(+1, +1), \hspace{0.2cm}{\it \Gamma}_{1}(-1) + \varepsilon_{2}(-1, +1)\right] = {\rm Min}\left[0.36 + 0.81, 0.04 + 0.09\right]\hspace{0.15cm}\underline {= 0.13} \hspace{0.05cm},$$
$${\it \Gamma}_{2}(-1) \ = \ {\rm Min}\left[{\it \Gamma}_{1}(+1) + \varepsilon_{2}(+1, -1), \hspace{0.2cm}{\it \Gamma}_{1}(-1) + \varepsilon_{2}(-1, -1)\right] = {\rm Min}\left[0.36 + 0.01, 0.04 + 1.21\right]\hspace{0.15cm}\underline {= 0.37} \hspace{0.05cm}.$$
Berechnung der minimalen Gesamtfehlergrößen

Im skizziertenden Trellisdiagramm ist der Zustand  „$1$”  als  „$+1$”  und  „$0$”  als  „$–1$”  zu interpretieren.

Dann gilt:

  • ${\it \Gamma}_2(+1) = 0.13$  ist die minimale Gesamtfehlergröße unter der Hypothese,  dass das nachfolgende Symbol  $a_3 = +1$  sein wird.
  • Unter dieser Annahme ist  $a_2 = \ –1$  wahrscheinlicher als  $a_2 = +1$,  wie aus dem Trellisdiagramm hervorgeht  (der ankommende Pfad ist blau).
  • Eine realistische Alternative zur Kombination  „$a_2 = \ –1,\ a_3 = +1$”  ist  „$a_2 = +1,\ a_3 = \ –1$”,  die zur minimalen Gesamtfehlergröße ${\it \Gamma}_2(–1) = 0.37$  führen.  Hier ist der ankommende Pfad rot.


(5)  Für den Zeitpunkt  $\nu = 3$  gelten folgende Gleichungen:

$$\varepsilon_{3}(+1, +1) \ = \ [0.5 - 1.0]^2=0.25,\hspace{0.2cm} \varepsilon_{3}(-1, +1) = [0.5 +0.2]^2=0.49 \hspace{0.05cm},$$
$$\varepsilon_{3}(+1, -1) \ = \ [0.5 -0.2]^2=0.09,\hspace{0.2cm} \varepsilon_{3}(-1, -1) = [0.5 +1.0]^2=2.25 \hspace{0.05cm}.$$
$$\Rightarrow \hspace{0.3cm}{\it \Gamma}_{3}(+1) \ = \ {\rm Min}\left[0.13 + 0.25, 0.37 + 0.49\right]\hspace{0.15cm}\underline {= 0.38} \hspace{0.05cm},\hspace{0.8cm} {\it \Gamma}_{3}(-1) \ = \ {\rm Min}\left[0.13 + 0.09, 0.37 + 2.25\right]\hspace{0.15cm}\underline {= 0.22} \hspace{0.05cm}.$$
  • Bei beiden Gleichungen ist der jeweils erste Term der kleinere,  wobei jeweils  ${\it \Gamma}_2(+1) = 0.13$  enthalten ist.
  • Deshalb wird der Viterbi–Empfänger mit Sicherheit  $a_3 = +1$  ausgeben,  ganz egal,  welche Informationen er zu späteren Zeitpunkten  ($\nu > 3$)  noch bekommen wird.
  • Verfolgt man den durchgehenden Pfad im Trellisdiagramm von rechts nach links,  so sind durch die Festlegung  $a_3 = +1$  auch die früheren Amplitudenkoeffizienten fix:
$$a_1 = a_2 = \ –1.$$